
Prescient
Release 2.0.2

Prescient Developers

Dec 15, 2021

CONTENTS:

1 Using Prescient 1
1.1 Installation . 1
1.2 Running Prescient . 3
1.3 Configuration Options . 5
1.4 Input Data . 11
1.5 Results and Statistics Output . 11
1.6 Customizing Prescient with Plugins . 11

2 Modeling Concepts 13
2.1 The Prescient Simulation Cycle . 13
2.2 Reserves and Ancillary Services . 14
2.3 Energy Markets and Pricing . 14

3 Examples and Tutorials 15

4 Reference 17
4.1 File Formats . 17
4.2 Python Classes and Functions . 17

5 Indices and tables 19

i

ii

CHAPTER

ONE

USING PRESCIENT

1.1 Installation

Prescient is a python package with a number of dependencies and prerequisites.

To install Prescient, follow these steps:

• Install python

• Get Prescient source code

• Install dependencies

• Install a linear solver

• Install the Prescient python package

• Verify your installation

1.1.1 Install python

Prescient requires python 3.7 or later. We recommend installing Anaconda to manage python and other dependencies.

1.1.2 Get Prescient source code

The latest stable version of Prescient can be acquired as source from the Prescient github project, either by downloading
a zip file of the source code or by cloning the main branch of the github repository.

1.1.3 Install dependencies

Prescient runs in a python environment that must include a number of python prerequisites. You may want to create
a python environment specifically for Prescient. To create a new Anaconda environment that includes Prescient’s
prerequisites, issue the following command from the root folder of the Prescient source code:

conda env create -f environment.yml

The command above will create an environment named prescient. To use a different name for the environment, add the
-n option to the command above:

1

https://www.anaconda.com
https://github.com/grid-parity-exchange/Prescient

Prescient, Release 2.0.2

conda env create -n nameOfYourChoice -f environment.yml

Once you have create the new environment, make it the active environment:

conda activate prescient

If you are using something other than Anaconda to manage your python environment, use the information in environ-
ment.yml to identify which packages to install.

1.1.4 Install a linear solver

Prescient requires a mixed-integer linear programming (MILP) solver that is compatible with Pyomo. Options include
open source solvers such as CBC or GLPK, and commercial solvers such as CPLEX, Gurobi, or Xpress.

The specific mechanics of installing a solver is specific to the solver and/or the platform. An easy way to install an open
source solver on Linux and Mac is to install the CBC Anaconda package into the current conda environment:

conda install -c conda-forge coincbc

Tip: Be sure to activate the correct python environment before running the command above.

Note that the CBC solver is used in most Prescient tests, so you may want to install it even if you intend to use another
solver in your own runs.

1.1.5 Install the Prescient python package

The steps above configure a python environment with Prescient’s prerequisites. Now we must install Prescient itself.
From the prescient python environment, issue the following command:

pip install -e .

This will update the active python environment to include Prescient’s source code. Any changes to Prescient source
code will take affect each time Prescient is run.

This command will also install a few utilities that Prescient users may find useful, including runner.py (see Running
Prescient).

1.1.6 Verify your installation

Prescient is packaged with tests to verify it has been set up correctly. To execute the tests, issue the following command:

python -m unittest tests/simulator_tests/test_sim_rts_mod.py

This command runs the tests using the CBC solver and will fail if you haven’t installed CBC. The tests can take as long
as 30 minutes to run, depending on your machine. If Prescient was installed correctly then all tests should pass.

2 Chapter 1. Using Prescient

https://pyomo.readthedocs.io

Prescient, Release 2.0.2

1.2 Running Prescient

There are three ways to launch and run Prescient:

• With a configuration file, using runner.py

• With command line options, using the prescient module

• From python code, using in-code configuration

In all three cases, the analyst supplies configuration values that identify input data and dictate which options to use
during the Prescient simulation. Configuration options can be specified in a configuration file, on the command line,
in-code, or a combination of these methods, depending on how Prescient is launched.

To see what configuration options are available, see Configuration Options.

1.2.1 Launch with runner.py

Prescient can be run using runner.py, a utility which is installed along with Prescient (see Install the Prescient python
package). Before executing runner.py, you must create a configuration file indicating how Prescient should be run.
Here is an example of a configuration file that can be used with runner.py:

command/exec simulator.py
--data-directory=example_scenario_input
--output-directory=example_scenario_output
--input-format=rts-gmlc
--run-sced-with-persistent-forecast-errors
--start-date=07-11-2024
--num-days=7
--sced-horizon=1
--sced-frequency-minutes=10
--ruc-horizon=36

Because runner.py can potentially be used for more than launching Prescient, the first line of the configuration file must
match the line shown in the example above. Otherwise runner.py won’t know that you intend to run Prescient.

All subsequent lines set the value of a configuration option. Configuration options are described in Configuration
Options.

Once you have the configuration file prepared, you can launch Prescient using the following command:

runner.py config.txt

where config.txt should be replaced with the name of your configuration file.

1.2.2 Launch with the prescient module

Another way to run Prescient is to execute the prescient.simulator.prescient module:

python -m prescient.simulator.prescient <options>

where options specifies the configuration options for the run. An example might be something like this:

python -m prescient.simulator.prescient --data-directory=example_scenario_input --output-
→˓directory=example_scenario_output --input-format=rts-gmlc --run-sced-with-persistent-
→˓forecast-errors --start-date=07-11-2024 --num-days=7 --sced-horizon=1 --sced-frequency-
→˓minutes=10 --ruc-horizon=36

(continues on next page)

1.2. Running Prescient 3

Prescient, Release 2.0.2

(continued from previous page)

Configuration options can also be specified in a configuration file:

python -m prescient.simulator.prescient --config-file=config.txt

Note that if you use the –config-file option, it must be the only option on the command line.

Running the prescient module allows you to run Prescient without explicitly installing it, as long as Prescient is found
in the python module search path.

1.2.3 Running Prescient from python code

Prescient can be configured and launched from python code:

from prescient.simulator import Prescient

Prescient().simulate(
data_path='deterministic_scenarios',
simulate_out_of_sample=True,
run_sced_with_persistent_forecast_errors=True,
output_directory='deterministic_simulation_output',
start_date='07-10-2020',
num_days=7,
sced_horizon=4,
reserve_factor=0.0,
deterministic_ruc_solver='cbc',
sced_solver='cbc',
sced_frequency_minutes=60,
ruc_horizon=36,
enforce_sced_shutdown_ramprate=True,
no_startup_shutdown_curves=True)

The code example above creates an instance of the Prescient class and passes configuration options to its simulate()
method. Another option is to set values on a configuration object, and then run the simulation after configuration is
done:

from prescient.simulator import Prescient

p = Prescient()

config = p.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'
config.start_date='07-10-2020'
config.num_days=7
config.sced_horizon=4
config.reserve_factor=0.0
config.deterministic_ruc_solver='cbc'
config.sced_solver='cbc'
config.sced_frequency_minutes=60

(continues on next page)

4 Chapter 1. Using Prescient

Prescient, Release 2.0.2

(continued from previous page)

config.ruc_horizon=36
config.enforce_sced_shutdown_ramprate=True
config.no_startup_shutdown_curves=True

p.simulate()

Managing configuration in code is very flexible. The example below demonstrates a combination of approaches to
configuring a prescient run:

from prescient.simulator import Prescient

simulator = Prescient()

Set some configuration options using the simulator's config object
config = simulator.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'

Others will be stored in a dictionary that can
potentially be shared among multiple prescient runs
options = {

'start_date':'07-10-2020',
'sced_horizon':4,
'reserve_factor':0.0,
'deterministic_ruc_solver':'cbc',
'sced_solver':'cbc',
'sced_frequency_minutes':60,
'ruc_horizon':36,
'enforce_sced_shutdown_ramprate':True,
'no_startup_shutdown_curves':True,

}

And finally, pass the dictionary to the simulate() method,
along with an additional function argument.
simulator.simulate(**options, num_days=7)

1.3 Configuration Options

• Overview

• Option Data Types

• List of Configuration Options

1.3. Configuration Options 5

Prescient, Release 2.0.2

1.3.1 Overview

Prescient configuration options are used to indicate how the Prescient simulation should be run. Configuration options
can be specified on the command line, in a text configuration file, or in code, depending on how Prescient is launched
(see Running Prescient).

Each configuration option has a name, a data type, and a default value. The name used on the command line and
the name used in code vary slightly. For example, the number of days to simulate is specified as --num-days on the
command line, and num_days in code.

1.3.2 Option Data Types

Most options use self-explanatory data types like String, Integer, and Float, but some data types require more expla-
nation and may be specified in code in ways that are unavailable on the command line:

Table 1: Configuration Data Types
Data type Command-line/config file usage In-code usage
Path A text string that refers to a file or

folder
Same as command-line

Date A string that can be converted to a
date, such as 1776-07-04.

Either a string or a datetime object.

Flag Simply include the option to set it to
true. For example, the command be-
low sets simulate_out_of_sample to
true:
runner.py --simulate-out-
→˓of-sample

Set the option by assigning True or
False:
config.simulate_out_of_
→˓sample = True

Module Refer to a python module in one of
the following ways:

• The name of a python
module (such as pre-
scient.simulator.prescient)

• The path to a python
file (such as pre-
scient/simulator/prescient.py)

In addition to the two string options
available to the command-line, code
may also use a python module ob-
ject. For example:

import my_custom_data_
→˓provider
config.data_provider = my_
→˓custom_data_provider

1.3.3 List of Configuration Options

The table below describes all available configuration options.

6 Chapter 1. Using Prescient

Prescient, Release 2.0.2

Table 2: Configuration Options
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--config-file config_file Path. Default=None. Path to a file holding configuration op-
tions. Can be absolute or relative.
Cannot be set in code directly on a
configuration object. If specified, no
other command line options or func-
tion arguments are allowed.

General Options
--start-date start_date Date. Default=2020-01-

01.
The start date for the simulation.

--num-days num_days Integer. Default=7 The number of days to simulate.
Data Options
--data-path
or
--data-directory

data_path Path. Default=input_data. Path to a file or folder where input data
is located. Whether it should be a file
or a folder depends on the input for-
mat. See Input Data.

--input-format input_format String. Default=dat. The format of the input data. Valid
values are dat and rts_gmlc. Ignored
when using a custom data provider.
See Input Data.

--data-provider data_provider Module. Default=No cus-
tom data provider.

A python module with a custom data
provider that will supply data to Pre-
scient during the simulation. Don’t
specify this option unless you are
using a custom data provider; use
data_path and input_format instead.
See Custom Data Providers.

--output-directory output_directory Path. Default=outdir. The path to the root directory to which
all generated simulation output files
and associated data are written.

RUC Options
--ruc_every-hours ruc_every_hours Integer. Default=24 How often a RUC is executed, in

hours. Default is 24. Must be a divisor
of 24.

--ruc-execution-
hour

ruc_execution_hour Integer. Default=16 Specifies an hour of the day the
RUC process is executed. If multiple
RUCs are executed each day (because
ruc_every_hours is less than 24), any
of the execution times may be spec-
ified. Negative values indicate hours
before midnight, positive after.

--ruc-horizon ruc_horizon Integer. Default=48 The number of hours to include in each
RUC. Must be >= ruc_every_hours
and <= 48.

--ruc-prescience-
hour

ruc_prescience_hour Integer. Default=0. The number of initial hours of each
RUC in which linear blending of fore-
casts and actual values is done, mak-
ing some near-term forecasts more ac-
curate.

continues on next page

1.3. Configuration Options 7

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--run-ruc-with-next-
day-data

run_ruc_with_next_day_dataFlag. Default=false. If false (the default), never use more
than 24 hours of forecast data even
if the RUC horizon is longer than 24
hours. Instead, infer values beyond 24
hours.
If true, use forecast data for the full
RUC horizon.

--simulate-out-of-
sample

simu-
late_out_of_sample

Flag. Default=false. If false, use forecast input data as both
forecasts and actual values; the actual
value input data is ignored.
If true, values for the current sim-
ulation time are taken from the ac-
tual value input, and actual values
are used to blend near-term values if
ruc_prescience_hour is non-zero.

--ruc-network-type ruc_network_type String. Default=ptdf. Specifies how the network is repre-
sented in RUC models. Choices are: *
ptdf – power transfer distribution fac-
tor representation * btheta – b-theta
representation

--ruc-slack-type ruc_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in the RUC model formulation.
Choices are: * every-bus – slack vari-
ables at every system bus * ref-bus-
and-branches – slack variables at only
reference bus and each system branch

--deterministic-ruc-
solver

determinis-
tic_ruc_solver

String. Default=cbc. The name of the solver to use for
RUCs.

--deterministic-ruc-
solver-options

determinis-
tic_ruc_solver_options

String. Default=None. Solver options applied to all RUC
solves.

--ruc-mipgap ruc_mipgap Float. Default=0.01. The mipgap for all deterministic RUC
solves.

--output-ruc-initial-
conditions

out-
put_ruc_initial_conditions

Flag. Default=false. Print initial conditions to stdout prior
to each RUC solve.

--output-ruc-
solutions

out-
put_ruc_solutions

Flag. Default=false. Print RUC solution to stdout after each
RUC solve.

--write-
deterministic-
ruc-instances

write_deterministic_ruc_instancesFlag. Default=false. Save each individual RUC model to a
file. The date and time the RUC was
executed is indicated in the file name.

--deterministic-ruc-
solver-plugin

determinis-
tic_ruc_solver_plugin

Module. Default=None. If the user has an alternative method
to solve RUCs, it should be specified
here, e.g., my_special_plugin.py.

Note: This option is ignored if --
simulator-plugin is used.

SCED Options
continues on next page

8 Chapter 1. Using Prescient

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--sced-frequency-
minutes

sced_frequency_minutesInteger. Default=60. How often a SCED will be run, in min-
utes. Must divide evenly into 60, or be
a multiple of 60.

--sced-horizon sced_horizon Integer. Default=1 The number of time periods to include
in each SCED. Must be at least 1.

--run-sced-with-
persistent-forecast-
errors

run_sced_with_persistent_forecast_errorsFlag. Default=false. If true, then values in SCEDs use per-
sistent forecast errors. If false, all val-
ues in SCEDs use actual values for all
time periods, including future time pe-
riods. See Future Values in SCEDs.

--enforce-sced-
shutdown-ramprate

en-
force_sced_shutdown_ramprate

Flag. Default=false. Enforces shutdown ramp-rate con-
straints in the SCED. Enabling this
option requires a long SCED look-
ahead (at least an hour) to ensure the
shutdown ramp-rate constraints can be
statisfied.

--sced-network-type sced_network_type String. Default=ptdf. Specifies how the network is repre-
sented in SCED models. Choices are:
* ptdf – power transfer distribution
factor representation * btheta – b-theta
representation

--sced-slack-type sced_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in SCED models. Choices are:
* every-bus – slack variables at every
system bus * ref-bus-and-branches –
slack variables at only reference bus
and each system branch

--sced-solver sced_solver String. Default=cbc. The name of the solver to use for
SCEDs.

--sced-solver-
options

sced_solver_options String. Default=None. Solver options applied to all SCED
solves.

--print-sced print_sced Flag. Default=false. Print results from SCED solves to std-
out.

--output-sced-
initial-conditions

out-
put_sced_initial_conditions

Flag. Default=false. Print SCED initial conditions to stdout
prior to each solve.

--output-sced-loads output_sced_loads Flag. Default=false. Print SCED loads to stdout prior to
each solve.

--write-sced-
instances

write_sced_instances Flag. Default=false. Save each individual SCED model to a
file. The date and time the SCED was
executed is indicated in the file name.

Output Options
--disable-
stackgraphs

disable_stackgraphs Flag. Default=false. Disable stackgraph generation.

--output-max-
decimal-places

out-
put_max_decimal_places

Integer. Default=6. The number of decimal places to out-
put to summary files. Output is
rounded to the specified accuracy.

--output-solver-logs output_solver_logs Flag. Default=false. Whether to print solver logs to stdout
during execution.

continues on next page

1.3. Configuration Options 9

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

Miscellaneous Op-
tions
--reserve-factor reserve_factor Float. Default=0.0. The reserve factor, expressed as a con-

stant fraction of demand, for spinning
reserves at each time period of the sim-
ulation. Applies to both RUC and
SCED models.

--no-startup-
shutdown-curves

no_startup_shutdown_curvesFlag. Default=False. If true, then do not infer
startup/shutdown ramping curves
when starting-up and shutting-down
thermal generators.

--symbolic-solver-
labels

sym-
bolic_solver_labels

Flag. Default=False. Whether to use symbol names derived
from the model when interfacing with
the solver.

--enable-quick-
start-generator-
commitment

en-
able_quick_start_generator_commitment

Flag. Default=False. Whether to allow quick start genera-
tors to be committed if load shedding
would otherwise occur.

Market and Pric-
ing Options
--compute-market-
settlements

com-
pute_market_settlements

Flag. Default=False. Whether to solve a day-ahead market
as well as real-time market and re-
port the daily profit for each generator
based on the computed prices.

--day-ahead-pricing day_ahead_pricing String. Default=aCHP. The pricing mechanism to use for the
day-ahead market. Choices are: *
LMP – locational marginal price *
ELMP – enhanced locational marginal
price * aCHP – approximated convex
hull price.

--price-threshold price_threshold Float. Default=10000.0. Maximum possible value the price can
take. If the price exceeds this value
due to Load Mismatch, then it is set
to this value.

--reserve-price-
threshold

re-
serve_price_threshold

Float. Default=10000.0. Maximum possible value the reserve
price can take. If the reserve price ex-
ceeds this value, then it is set to this
value.

Plugin Options
--plugin plugin Module. Default=None. Python plugins are analyst-provided

code that Prescient calls at various
points in the simulation process. See
Customizing Prescient with Plugins
for details.
After Prescient has been initialized,
the configuration object’s plugin prop-
erty holds plugin-specific setting val-
ues.

continues on next page

10 Chapter 1. Using Prescient

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--simulator-plugin simulator_plugin Module. Default=None. A module that implements the engine
interface. Use this option to replace
methods that setup and solve RUC and
SCED models with custom implemen-
tations.

1.4 Input Data

1.4.1 Custom Data Providers

1.5 Results and Statistics Output

Under Construction

Documentation coming soon

1.6 Customizing Prescient with Plugins

Under Construction

Documentation coming soon

1.4. Input Data 11

Prescient, Release 2.0.2

12 Chapter 1. Using Prescient

CHAPTER

TWO

MODELING CONCEPTS

2.1 The Prescient Simulation Cycle

Note: This was taken from a previous write-up and needs to be revisited.

Prescient simulates the operation of the network throughout a study horizon, finding the set of operational choices that
satisfy demand at the lowest possible cost.

Prescient loops through two repeating phases, the reliability unit commitment (RUC) phase and the security constrained
economic dispatch (SCED) phase. The RUC phase determines which dispatchable generators will be active in upcom-
ing operational time periods. For each operational period within a RUC cycle, the SCED phase selects the dispatch
level of each committed thermal generator.

The RUC phase occurs one or more times per day. Each time the RUC phase occurs, Prescient generates a unit commit-
ment schedule that indicates which generators will be brought online or taken offline within the RUC’s time horizon.
The SCED phase occurs one or more times per hour. Each SCED selects a thermal dispatch level for each committed
generator.

2.1.1 The RUC Phase

More detailed description of the RUC. . .

The RUC phase occurs one or more times per day. Each time the RUC phase occurs, Prescient generates a unit commit-
ment schedule that indicates which generators will be brought online or taken offline within the RUC’s time horizon.
The RUC schedule may begin immediately, or it may begin a number of hours after the RUC is generated.

2.1.2 The SCED Phase

More detailed description of the SCED, including a high level description of the optimization problem being solved,
and possibly a conversational description of some things that can be tweaked (such as how often a SCED runs).

13

Prescient, Release 2.0.2

Future Values in SCEDs

Warning: Coming soon.

2.2 Reserves and Ancillary Services

2.3 Energy Markets and Pricing

14 Chapter 2. Modeling Concepts

CHAPTER

THREE

EXAMPLES AND TUTORIALS

15

Prescient, Release 2.0.2

16 Chapter 3. Examples and Tutorials

CHAPTER

FOUR

REFERENCE

4.1 File Formats

4.1.1 RTS-GMLC

This is the main input format.

4.1.2 Pyomo DAT Files

Old way to do it.

4.2 Python Classes and Functions

17

Prescient, Release 2.0.2

18 Chapter 4. Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

19

	Using Prescient
	Installation
	Install python
	Get Prescient source code
	Install dependencies
	Install a linear solver
	Install the Prescient python package
	Verify your installation

	Running Prescient
	Launch with runner.py
	Launch with the prescient module
	Running Prescient from python code

	Configuration Options
	Overview
	Option Data Types
	List of Configuration Options

	Input Data
	Custom Data Providers

	Results and Statistics Output
	Customizing Prescient with Plugins

	Modeling Concepts
	The Prescient Simulation Cycle
	The RUC Phase
	The SCED Phase
	Future Values in SCEDs

	Reserves and Ancillary Services
	Energy Markets and Pricing

	Examples and Tutorials
	Reference
	File Formats
	RTS-GMLC
	Pyomo DAT Files

	Python Classes and Functions

	Indices and tables

