
Prescient
Release 2.0.2

Prescient Developers

Jul 26, 2022

CONTENTS:

1 Using Prescient 3
1.1 Installation . 3
1.2 Running Prescient . 5
1.3 Configuration Options . 8
1.4 Input Data . 14
1.5 Results and Statistics Output . 14
1.6 Customizing Prescient with Plugins . 14

2 Modeling Concepts 15
2.1 The Prescient Simulation Cycle . 15
2.2 Time Series Data Streams . 17
2.3 Reserves and Ancillary Services . 18
2.4 Energy Markets and Pricing . 18

3 Examples and Tutorials 19

4 Reference 21
4.1 File Formats . 21
4.2 Python Classes and Functions . 21

5 Indices and tables 23

i

ii

Prescient, Release 2.0.2

Prescient is a python library that provides production cost modeling capabilities for power generation and distribution
networks.

CONTENTS: 1

Prescient, Release 2.0.2

2 CONTENTS:

CHAPTER

ONE

USING PRESCIENT

1.1 Installation

The Prescient python package can be installed using pip, or it can be installed from source. Python and a linear solver
are prerequisites for either installation method.

To install Prescient, follow these steps:

• Install python

• Install a linear solver

• Install Using Pip

• Install From Source

– Get Prescient source code

– Install Python Dependencies

– Install Egret

– Install the Prescient python package

– Verify your installation

1.1.1 Install python

Prescient requires python 3.7 or later. We recommend installing Anaconda to manage python and other dependencies.

1.1.2 Install a linear solver

Prescient requires a mixed-integer linear programming (MILP) solver that is compatible with Pyomo. Options include
open source solvers such as CBC or GLPK, and commercial solvers such as CPLEX, Gurobi, or Xpress.

The specific mechanics of installing a solver is specific to the solver and/or the platform. An easy way to install an open
source solver on Windows, Linux, and Mac is to install the CBC Anaconda package into the current conda environment:

conda install -c conda-forge coincbc

Tip: Be sure to activate the correct python environment before running the command above.

3

https://www.anaconda.com
https://pyomo.readthedocs.io

Prescient, Release 2.0.2

Note that the CBC solver is used in most Prescient tests, so you may want to install it even if you intend to use another
solver in your own runs.

1.1.3 Install Using Pip

Prescient is available as a python package that can be installed using pip. To install the latest release of Prescient use
the following command:

pip install gridx-prescient

Be sure the intended python environment is active before issuing the command above.

1.1.4 Install From Source

You may want to install from source if you want to use the latest pre-release version of the code, or if you want to
modify/contribute to the code yourself. The steps required to install Prescient from source are described below:

Get Prescient source code

The latest version of Prescient can be acquired as source from the Prescient github project, either by downloading a zip
file of the source code or by cloning the main branch of the github repository.

Install Python Dependencies

The python environment where you run Prescient must include a number of prerequisites. You may want to create a
python environment specifically for Prescient. To create a new Anaconda environment and install Prescient’s prereq-
uisites into the new environment, issue the following command from the root folder of the Prescient source code:

conda env create -f environment.yml

The command above will create an environment named prescient. To use a different name for the environment, add the
-n option to the command above:

conda env create -n nameOfYourChoice -f environment.yml

Once you have create the new environment, make it the active environment:

conda activate prescient

If you are using something other than Anaconda to manage your python environment, use the information in environ-
ment.yml to identify which packages to install.

Install Egret

When installing Prescient from the latest version of the source code, Egret may need to be installed manually because
pre-release versions of Prescient sometimes depend on pre-release versions of EGRET. Install EGRET from source
according to the instructions here <https://github.com/grid-parity-exchange/Egret/blob/main/README.md>.

4 Chapter 1. Using Prescient

https://github.com/grid-parity-exchange/Prescient

Prescient, Release 2.0.2

Install the Prescient python package

The steps above configure a python environment with Prescient’s prerequisites. Now we must install Prescient itself.
From the prescient python environment, issue the following command:

pip install -e .

This will update the active python environment to include Prescient’s source code. Any changes to Prescient source
code will take affect each time Prescient is run.

This command will also install a few utilities that Prescient users may find useful, including runner.py (see Running
Prescient).

Verify your installation

Prescient is packaged with tests to verify it has been set up correctly. To execute the tests, issue the following command:

python -m unittest tests/simulator_tests/test_sim_rts_mod.py

This command runs the tests using the CBC solver and will fail if you haven’t installed CBC. The tests can take as long
as 30 minutes to run, depending on your machine. If Prescient was installed correctly then all tests should pass.

1.2 Running Prescient

There are three ways to launch and run Prescient:

• With a configuration file, using runner.py

• With command line options, using the prescient.simulator module

• From python code, using in-code configuration

In all three cases, the analyst supplies configuration values that identify input data and dictate which options to use
during the Prescient simulation. Configuration options can be specified in a configuration file, on the command line,
in-code, or a combination of these methods, depending on how Prescient is launched.

To see what configuration options are available, see Configuration Options.

1.2.1 Launch with runner.py

Prescient can be run using runner.py, a utility which is installed along with Prescient (see Install Egret). Before exe-
cuting runner.py, you must create a configuration file indicating how Prescient should be run. Here is an example of a
configuration file that can be used with runner.py:

command/exec simulator.py
--data-directory=example_scenario_input
--output-directory=example_scenario_output
--input-format=rts-gmlc
--run-sced-with-persistent-forecast-errors
--start-date=07-11-2024
--num-days=7
--sced-horizon=1
--sced-frequency-minutes=10
--ruc-horizon=36

1.2. Running Prescient 5

Prescient, Release 2.0.2

Because runner.py can potentially be used for more than launching Prescient, the first line of the configuration file must
match the line shown in the example above. Otherwise runner.py won’t know that you intend to run Prescient.

All subsequent lines set the value of a configuration option. Configuration options are described in Configuration
Options.

Once you have the configuration file prepared, you can launch Prescient using the following command:

runner.py config.txt

where config.txt should be replaced with the name of your configuration file.

1.2.2 Launch with the prescient.simulator module

Another way to run Prescient is to execute the prescient.simulator module:

python -m prescient.simulator <options>

where options specifies the configuration options for the run. An example might be something like this:

python -m prescient.simulator --data-directory=example_scenario_input --output-
→˓directory=example_scenario_output --input-format=rts-gmlc --run-sced-with-persistent-
→˓forecast-errors --start-date=07-11-2024 --num-days=7 --sced-horizon=1 --sced-frequency-
→˓minutes=10 --ruc-horizon=36

Configuration options can also be specified in a configuration file:

python -m prescient.simulator --config-file=config.txt

You can combine the –config-file option with other command line options. The contents of the configuration file are
effectively inserted into the command line at the location of the –config-file option. You can override values in a
configuration file by repeating the option at some point after the –config-file option.

Running the prescient.simulator module allows you to run Prescient without explicitly installing it, as long as Prescient
is found in the python module search path.

1.2.3 Running Prescient from python code

Prescient can be configured and launched from python code:

from prescient.simulator import Prescient

Prescient().simulate(
data_path='deterministic_scenarios',
simulate_out_of_sample=True,
run_sced_with_persistent_forecast_errors=True,
output_directory='deterministic_simulation_output',
start_date='07-10-2020',
num_days=7,
sced_horizon=4,
reserve_factor=0.0,
deterministic_ruc_solver='cbc',
sced_solver='cbc',
sced_frequency_minutes=60,

(continues on next page)

6 Chapter 1. Using Prescient

Prescient, Release 2.0.2

(continued from previous page)

ruc_horizon=36,
enforce_sced_shutdown_ramprate=True,
no_startup_shutdown_curves=True)

The code example above creates an instance of the Prescient class and passes configuration options to its simulate()
method. An alternative is to set values on a configuration object, and then run the simulation after configuration is
done:

from prescient.simulator import Prescient

p = Prescient()

config = p.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'
config.start_date='07-10-2020'
config.num_days=7
config.sced_horizon=4
config.reserve_factor=0.0
config.deterministic_ruc_solver='cbc'
config.sced_solver='cbc'
config.sced_frequency_minutes=60
config.ruc_horizon=36
config.enforce_sced_shutdown_ramprate=True
config.no_startup_shutdown_curves=True

p.simulate()

A third option is to store configuration values in a dict, which can potentially be shared among multiple runs:

from prescient.simulator import Prescient

options = {
'data_path':'deterministic_scenarios',
'simulate_out_of_sample':True,
'run_sced_with_persistent_forecast_errors':True,
'output_directory':'deterministic_simulation_output'

}

Prescient().simulate(**options)

These three methods can be used together quite flexibly. The example below demonstrates a combination of approaches
to configuring a prescient run:

from prescient.simulator import Prescient

simulator = Prescient()

Set some configuration options using the simulator's config object
config = simulator.config
config.data_path='deterministic_scenarios'

(continues on next page)

1.2. Running Prescient 7

Prescient, Release 2.0.2

(continued from previous page)

config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'

Others will be stored in a dictionary that can
potentially be shared among multiple prescient runs
options = {

'start_date':'07-10-2020',
'sced_horizon':4,
'reserve_factor':0.0,
'deterministic_ruc_solver':'cbc',
'sced_solver':'cbc',
'sced_frequency_minutes':60,
'ruc_horizon':36,
'enforce_sced_shutdown_ramprate':True,
'no_startup_shutdown_curves':True,

}

And finally, pass the dictionary to the simulate() method,
along with an additional function argument.
simulator.simulate(**options, num_days=7)

1.3 Configuration Options

• Overview

• Option Data Types

• List of Configuration Options

1.3.1 Overview

Prescient configuration options are used to indicate how the Prescient simulation should be run. Configuration options
can be specified on the command line, in a text configuration file, or in code, depending on how Prescient is launched
(see Running Prescient).

Each configuration option has a name, a data type, and a default value. The name used on the command line and
the name used in code vary slightly. For example, the number of days to simulate is specified as --num-days on the
command line, and num_days in code.

8 Chapter 1. Using Prescient

Prescient, Release 2.0.2

1.3.2 Option Data Types

Most options use self-explanatory data types like String, Integer, and Float, but some data types require more expla-
nation and may be specified in code in ways that are unavailable on the command line:

Table 1: Configuration Data Types
Data type Command-line/config file usage In-code usage
Path A text string that refers to a file or

folder. Can be relative or absolute,
and may include special characters
such as ~.

Same as command-line

Date A string that can be converted to a
date, such as 1776-07-04.

Either a string or a datetime object.

Flag Simply include the option to set it to
true. For example, the command be-
low sets simulate_out_of_sample to
true:
runner.py --simulate-out-
→˓of-sample

Set the option by assigning True or
False:
config.simulate_out_of_
→˓sample = True

Module Refer to a python module in one of
the following ways:

• The name of a python
module (such as pre-
scient.simulator.prescient)

• The path to a python
file (such as pre-
scient/simulator/prescient.py)

In addition to the two string options
available to the command-line, code
may also use a python module ob-
ject. For example:

import my_custom_data_
→˓provider
config.data_provider = my_
→˓custom_data_provider

1.3.3 List of Configuration Options

The table below describes all available configuration options.

Table 2: Configuration Options
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--config-file config_file Path. Default=None. Path to a file holding configuration
options. Can be absolute or rela-
tive. Cannot be set in code directly
on a configuration object, but can
be passed to a configuration object’s
parse_args() function:

p = Prescient()
p.config.parse_args(["--
→˓config-file", "my-config.
→˓txt"])

See Launch with runner.py for a de-
scription of configuration file syntax.

General Options
continues on next page

1.3. Configuration Options 9

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--start-date start_date Date. Default=2020-01-
01.

The start date for the simulation.

--num-days num_days Integer. Default=7 The number of days to simulate.
Data Options
--data-path
or
--data-directory

data_path Path. Default=input_data. Path to a file or folder where input data
is located. Whether it should be a file
or a folder depends on the input for-
mat. See Input Data.

--input-format input_format String. Default=dat. The format of the input data. Valid
values are dat and rts_gmlc. Ignored
when using a custom data provider.
See Input Data.

--data-provider data_provider Module. Default=No cus-
tom data provider.

A python module with a custom data
provider that will supply data to Pre-
scient during the simulation. Don’t
specify this option unless you are
using a custom data provider; use
data_path and input_format instead.
See Custom Data Providers.

--output-directory output_directory Path. Default=outdir. The path to the root directory to which
all generated simulation output files
and associated data are written.

RUC Options
--ruc_every-hours ruc_every_hours Integer. Default=24 How often a RUC is executed, in

hours. Default is 24. Must be a divisor
of 24.

--ruc-execution-
hour

ruc_execution_hour Integer. Default=16 Specifies an hour of the day the
RUC process is executed. If multiple
RUCs are executed each day (because
ruc_every_hours is less than 24), any
of the execution times may be spec-
ified. Negative values indicate hours
before midnight, positive after.

--ruc-horizon ruc_horizon Integer. Default=48 The number of hours to include in each
RUC. Must be >= ruc_every_hours
and <= 48.

--ruc-prescience-
hour

ruc_prescience_hour Integer. Default=0. The number of initial hours of each
RUC in which linear blending of fore-
casts and actual values is done, mak-
ing some near-term forecasts more ac-
curate.

--run-ruc-with-next-
day-data

run_ruc_with_next_day_dataFlag. Default=false. If false (the default), never use more
than 24 hours of forecast data even
if the RUC horizon is longer than 24
hours. Instead, infer values beyond 24
hours.
If true, use forecast data for the full
RUC horizon.

continues on next page

10 Chapter 1. Using Prescient

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--simulate-out-of-
sample

simu-
late_out_of_sample

Flag. Default=false. If false, use forecast input data as both
forecasts and actual values; the actual
value input data is ignored.
If true, values for the current sim-
ulation time are taken from the ac-
tual value input, and actual values
are used to blend near-term values if
ruc_prescience_hour is non-zero.

--ruc-network-type ruc_network_type String. Default=ptdf. Specifies how the network is repre-
sented in RUC models. Choices are: *
ptdf – power transfer distribution fac-
tor representation * btheta – b-theta
representation

--ruc-slack-type ruc_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in the RUC model formulation.
Choices are: * every-bus – slack vari-
ables at every system bus * ref-bus-
and-branches – slack variables at only
reference bus and each system branch

--deterministic-ruc-
solver

determinis-
tic_ruc_solver

String. Default=cbc. The name of the solver to use for
RUCs.

--deterministic-ruc-
solver-options

determinis-
tic_ruc_solver_options

String. Default=None. Solver options applied to all RUC
solves.

--ruc-mipgap ruc_mipgap Float. Default=0.01. The mipgap for all deterministic RUC
solves.

--output-ruc-initial-
conditions

out-
put_ruc_initial_conditions

Flag. Default=false. Print initial conditions to stdout prior
to each RUC solve.

--output-ruc-
solutions

out-
put_ruc_solutions

Flag. Default=false. Print RUC solution to stdout after each
RUC solve.

--write-
deterministic-
ruc-instances

write_deterministic_ruc_instancesFlag. Default=false. Save each individual RUC model to a
file. The date and time the RUC was
executed is indicated in the file name.

--deterministic-ruc-
solver-plugin

determinis-
tic_ruc_solver_plugin

Module. Default=None. If the user has an alternative method
to solve RUCs, it should be specified
here, e.g., my_special_plugin.py.

Note: This option is ignored if --
simulator-plugin is used.

SCED Options
--sced-frequency-

minutes
sced_frequency_minutesInteger. Default=60. How often a SCED will be run, in min-

utes. Must divide evenly into 60, or be
a multiple of 60.

--sced-horizon sced_horizon Integer. Default=1 The number of time periods to include
in each SCED. Must be at least 1.

continues on next page

1.3. Configuration Options 11

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--run-sced-with-
persistent-forecast-
errors

run_sced_with_persistent_forecast_errorsFlag. Default=false. If true, then values in SCEDs use per-
sistent forecast errors. If false, all val-
ues in SCEDs use actual values for all
time periods, including future time pe-
riods. See Forecast Smoothing.

--enforce-sced-
shutdown-ramprate

en-
force_sced_shutdown_ramprate

Flag. Default=false. Enforces shutdown ramp-rate con-
straints in the SCED. Enabling this
option requires a long SCED look-
ahead (at least an hour) to ensure the
shutdown ramp-rate constraints can be
statisfied.

--sced-network-type sced_network_type String. Default=ptdf. Specifies how the network is repre-
sented in SCED models. Choices are:
* ptdf – power transfer distribution
factor representation * btheta – b-theta
representation

--sced-slack-type sced_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in SCED models. Choices are:
* every-bus – slack variables at every
system bus * ref-bus-and-branches –
slack variables at only reference bus
and each system branch

--sced-solver sced_solver String. Default=cbc. The name of the solver to use for
SCEDs.

--sced-solver-
options

sced_solver_options String. Default=None. Solver options applied to all SCED
solves.

--print-sced print_sced Flag. Default=false. Print results from SCED solves to std-
out.

--output-sced-
initial-conditions

out-
put_sced_initial_conditions

Flag. Default=false. Print SCED initial conditions to stdout
prior to each solve.

--output-sced-loads output_sced_loads Flag. Default=false. Print SCED loads to stdout prior to
each solve.

--write-sced-
instances

write_sced_instances Flag. Default=false. Save each individual SCED model to a
file. The date and time the SCED was
executed is indicated in the file name.

Output Options
--disable-
stackgraphs

disable_stackgraphs Flag. Default=false. Disable stackgraph generation.

--output-max-
decimal-places

out-
put_max_decimal_places

Integer. Default=6. The number of decimal places to out-
put to summary files. Output is
rounded to the specified accuracy.

--output-solver-logs output_solver_logs Flag. Default=false. Whether to print solver logs to stdout
during execution.

Miscellaneous Op-
tions

continues on next page

12 Chapter 1. Using Prescient

Prescient, Release 2.0.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--reserve-factor reserve_factor Float. Default=0.0. The reserve factor, expressed as a con-
stant fraction of demand, for spinning
reserves at each time period of the sim-
ulation. Applies to both RUC and
SCED models.

--no-startup-
shutdown-curves

no_startup_shutdown_curvesFlag. Default=False. If true, then do not infer
startup/shutdown ramping curves
when starting-up and shutting-down
thermal generators.

--symbolic-solver-
labels

sym-
bolic_solver_labels

Flag. Default=False. Whether to use symbol names derived
from the model when interfacing with
the solver.

--enable-quick-
start-generator-
commitment

en-
able_quick_start_generator_commitment

Flag. Default=False. Whether to allow quick start genera-
tors to be committed if load shedding
would otherwise occur.

Market and Pric-
ing Options

--compute-market-
settlements

com-
pute_market_settlements

Flag. Default=False. Whether to solve a day-ahead market
as well as real-time market and re-
port the daily profit for each generator
based on the computed prices.

--day-ahead-pricing day_ahead_pricing String. Default=aCHP. The pricing mechanism to use for the
day-ahead market. Choices are: *
LMP – locational marginal price *
ELMP – enhanced locational marginal
price * aCHP – approximated convex
hull price.

--price-threshold price_threshold Float. Default=10000.0. Maximum possible value the price can
take. If the price exceeds this value
due to Load Mismatch, then it is set
to this value.

--reserve-price-
threshold

re-
serve_price_threshold

Float. Default=10000.0. Maximum possible value the reserve
price can take. If the reserve price ex-
ceeds this value, then it is set to this
value.

Plugin Options
--plugin plugin Module. Default=None. Python plugins are analyst-provided

code that Prescient calls at various
points in the simulation process. See
Customizing Prescient with Plugins
for details.
After Prescient has been initialized,
the configuration object’s plugin prop-
erty holds plugin-specific setting val-
ues.

--simulator-plugin simulator_plugin Module. Default=None. A module that implements the engine
interface. Use this option to replace
methods that setup and solve RUC and
SCED models with custom implemen-
tations.

1.3. Configuration Options 13

Prescient, Release 2.0.2

1.4 Input Data

1.4.1 Custom Data Providers

1.5 Results and Statistics Output

Under Construction

Documentation coming soon

1.6 Customizing Prescient with Plugins

Under Construction

Documentation coming soon

14 Chapter 1. Using Prescient

CHAPTER

TWO

MODELING CONCEPTS

2.1 The Prescient Simulation Cycle

Prescient simulates the operation of a power generation network throughout a study horizon, finding the set of opera-

15

Prescient, Release 2.0.2

tional choices that satisfy demand at the lowest possible cost.

A Prescient simulation consists of two repeating cycles, one nested in the other. The outer cycle is the Reliability
Unit Commitment (RUC) planning cycle, which schedules changes in dispatchable generators’ online status during the
cycle’s period. The inner, more frequent cycle is the Security Constrained Economic Dispatch (SCED) cycle, which
determines dispatch levels for dispatchable generators.

2.1.1 The RUC Cycle

The RUC cycle periodically generates a RUC plan. A RUC plan consists of two types of data: a unit commitment
schedule and, optionally, a pricing schedule (when compute-market-settlements is True). The unit commitment sched-
ule indicates which dispatchable generators should be activated or deactivated during upcoming time periods. The
pricing schedule sets the contract price for expected power delivery and for reserves (ancillary service products). The
RUC plan reflects the least expensive way to satisfy predicted loads while honoring system constraints.

A new RUC plan is generated at regular intervals, at least once per day. A new RUC plan always goes into effect at
midnight of each day. If more than one RUC plan is generated each day, then additional RUC plans take effect at equally
spaced intervals. For example, if 3 RUC plans are generated each day, then one will go into effect at midnight, one at
8:00 a.m., and one at 4:00 p.m. Each RUC plan covers the time period that starts when it goes into effect and ends just
as the next RUC plan becomes active.

A RUC plan is based on the current state of the system at the time the plan is generated (particularly the current
dispatch and up- or down-time for dispatchable generators), and on forecasts for a number of upcoming time periods.
The forecasts considered when forming a RUC plan must extend at least to the end of the RUC’s planning period, but
typically extend further into the future in order to avoid poor choices at the end of the plan (“end effects”). The amount
of time to consider when generating a RUC plan is known as the RUC horizon. A commonly used RUC horizon is 48
hours.

The simulation can be configured to generate RUC plans some number of hours before they take effect. This is done
by specifying a time of day for one of the plans to be generated. The gap between the specified generation time and the
next time a RUC plan is scheduled to take effect is called the RUC gap. Each RUC plan still covers the expected time
period, from the time the plan takes effect until the next RUC plan takes effect, but its decisions will be based on what
is known at the time the RUC plan is generated.

2.1.2 The SCED Cycle

The SCED process selects dispatch levels for all active dispatchable generators in the current simulation time period.
Dispatch levels are determined using a process that is very similar to that used to build a RUC plan. The current state
of the system, together with forecasts for a number of future time periods, are examined to select dispatch levels that
satisfy current loads and forecasted future loads at the lowest possible cost.

The SCED cycle is more frequent than the RUC cycle, with new dispatch levels selected at least once an hour. The SCED
honors unit commitment decisions made in the RUC plan; whether each generator is committed or not is dictatated by
the RUC schedule currently in effect.

Costs are also determined with each SCED, based on dispatchable generation selected by the SCED process, the com-
mitment and start-up costs as selected by the associated RUC process, as well as current actual demands and non-
dispatchable generation levels.

16 Chapter 2. Modeling Concepts

Prescient, Release 2.0.2

2.2 Time Series Data Streams

Prescient uses time series data from two data streams, the real-time stream (i.e., actuals) and the forecast stream. As
their names imply, the real-time stream includes data that the simulation should treat as actual values that occur at
specific times in the simulation, and the forecast stream includes forecasts for time periods that have not yet occured in
the simulation.

Both streams consist of time-stamped values for loads and non-dispatchable generation data.

2.2.1 Real-Time Data (Actuals)

The real-time data stream provides data that the simulation should treat as actual values. Real-time values are typically
used only when the simulation reaches the corresponding simulation time.

Real-time data can be provided at any time interval. The real-time data interval generally matches the SCED interval
(see sced-frequency-minutes), but this is not a requirement. If the SCED interval does not match the real-time interval
then real-time data will be interpolated or discarded as needed to match the SCED interval.

2.2.2 Forecasts

Forecast data are provided by the forecast data stream. The frequency of data provided through the forecast stream must
be hourly.

New forecasts are retrieved each time a new RUC plan is generated. The forecasts retrieved in a given batch are those
required to satisfy the RUC horizon (see ruc-horizon), starting with the RUC activation time.

Forecast Smoothing

As forecasts are retrieved from the forecast data stream, they may be adjusted so that near-term forecasts are more
accurate than forecasts further into the future. This serves two purposes: first, to avoid large jumps in timeseries values
due to inaccurate forecasts; and second, to model how forecasts become more accurate as their time approaches.

The number of forecasts to be smoothed is determined by the ruc-prescience-hour configuration option. Values for
the current simulation time are set equal to their actual value, ignoring data read from the forecast stream. Values for
ruc-prescience-hour hours after the current simulation time are set equal to data read from the forecast stream.
Between these two times, values are a weighted average of the values provided by the actuals and forecast data streams.
The weights vary linearly with where the time falls between the current time and the ruc prescience hour. For example,
if ruc-prescience-hour is 8, then the adjusted forecast for 2 hours after the current simulation time will be 0.
25*forecast + 0.75*actual.

Note that blending weights are determined relative to the current simulation time when the RUC is generated, not
relative to the time the RUC goes into effect.

2.2. Time Series Data Streams 17

Prescient, Release 2.0.2

Real-Time Forecast Adjustments

Forecasts are adjusted further each time a SCED is run. This is done by comparing the forecast for the current time
with the actual value for the current time. The ratio of these two values is calculated, then used as a scaling factor for
forecast values. For example, if the forecast for a value was 10% too high, all future forecasts for the same value are
reduced by 10%.

Note: If run-sced-with-persistent-forecast-errors is false, then SCEDs will use actual values for all time periods.
Forecasts will still be used for RUCs, but SCEDs will be based entirely on actual values, even for future time periods.

2.3 Reserves and Ancillary Services

2.4 Energy Markets and Pricing

18 Chapter 2. Modeling Concepts

CHAPTER

THREE

EXAMPLES AND TUTORIALS

19

Prescient, Release 2.0.2

20 Chapter 3. Examples and Tutorials

CHAPTER

FOUR

REFERENCE

4.1 File Formats

4.1.1 RTS-GMLC

This is the main input format.

4.1.2 Pyomo DAT Files

Old way to do it.

4.2 Python Classes and Functions

21

Prescient, Release 2.0.2

22 Chapter 4. Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

23

	Using Prescient
	Installation
	Install python
	Install a linear solver
	Install Using Pip
	Install From Source
	Get Prescient source code
	Install Python Dependencies
	Install Egret
	Install the Prescient python package
	Verify your installation

	Running Prescient
	Launch with runner.py
	Launch with the prescient.simulator module
	Running Prescient from python code

	Configuration Options
	Overview
	Option Data Types
	List of Configuration Options

	Input Data
	Custom Data Providers

	Results and Statistics Output
	Customizing Prescient with Plugins

	Modeling Concepts
	The Prescient Simulation Cycle
	The RUC Cycle
	The SCED Cycle

	Time Series Data Streams
	Real-Time Data (Actuals)
	Forecasts
	Forecast Smoothing
	Real-Time Forecast Adjustments

	Reserves and Ancillary Services
	Energy Markets and Pricing

	Examples and Tutorials
	Reference
	File Formats
	RTS-GMLC
	Pyomo DAT Files

	Python Classes and Functions

	Indices and tables

