

Prescient Documentation

Prescient is a python library that provides production cost modeling
capabilities for power generation and distribution networks.

Contents:

	Using Prescient
	Installation

	Running Prescient

	Configuration Options

	Input Data

	Results and Statistics Output

	Customizing Prescient with Plugins

	Modeling Concepts
	The Prescient Simulation Cycle

	Time Series Data Streams

	Reserves and Ancillary Services

	Energy Markets and Pricing

	Examples and Tutorials

	Reference
	Input Data

	Detailed Prescient Simulation Lifecycle

	RUC Details

	SCED Details

	Plugins

	Python Classes and Functions

Indices and tables

	Index

	Module Index

	Search Page

Using Prescient

	Installation
	Install python

	Install a MILP solver

	Install Prescient Using Pip

	Install Prescient From Source

	Running Prescient
	Launch with runner.py

	Launch with the prescient.simulator module

	Running Prescient from python code

	Configuration Options
	Overview

	Option Data Types

	List of Configuration Options

	Input Data
	Standard Input

	Custom Data Providers

	Results and Statistics Output

	Customizing Prescient with Plugins

Installation

The Prescient python package can be installed using pip, or it can be installed
from source. Python and a MILP solver are prerequisites for either installation
method.

To install Prescient, follow these steps:

	Install python

	Install a MILP solver

	Install Prescient Using Pip

	Install Prescient From Source

	Get Prescient source code

	Install Python Dependencies

	Install Egret

	Install the Prescient python package

	Verify your installation

Install python

Prescient requires python 3.7 or later. We recommend installing Anaconda [https://www.anaconda.com]
to manage python and other dependencies.

Install a MILP solver

Prescient requires a mixed-integer linear programming (MILP) solver that is compatible with
Pyomo [https://pyomo.readthedocs.io]. Options include open source solvers such as CBC or GLPK,
and commercial solvers such as CPLEX, Gurobi, or Xpress.

The specific mechanics of installing a solver is specific to the solver and/or the platform. An easy way to
install an open source solver on Linux and Mac is to install the CBC Anaconda package into the
current conda environment:

conda install -c conda-forge coincbc

Tip

Be sure to activate the correct python environment before running the command above.

CBC binaries for Windows and other platforms may be available from https://github.com/coin-or/Cbc/releases.

Note that the CBC solver is used in most Prescient tests, so you may want to install it even if
you intend to use another solver in your own runs.

Instructions to install other solvers can be found here.

Install Prescient Using Pip

Prescient is available as a python package that can be installed using pip. To install the latest
release of Prescient use the following command:

pip install gridx-prescient

Be sure the intended python environment is active before issuing the command above.

Install Prescient From Source

You may want to install from source if you want to use the latest pre-release
version of the code, or if you want to modify/contribute to the code yourself.
The steps required to install Prescient from source are described below:

Get Prescient source code

The latest version of Prescient can be acquired as source from
the Prescient github project [https://github.com/grid-parity-exchange/Prescient],
either by downloading a zip file of the source code or by cloning the main branch of
the github repository.

Install Python Dependencies

The python environment where you run Prescient must include a number of prerequisites.
You may want to create a python environment specifically for Prescient. To create a new
Anaconda environment and install Prescient’s prerequisites into the new environment, issue
the following command from the root folder of the Prescient source code:

conda env create -f environment.yml

The command above will create an environment named prescient. To use a different name for the
environment, add the -n option to the command above:

conda env create -n nameOfYourChoice -f environment.yml

Once you have create the new environment, make it the active environment:

conda activate prescient

If you are using something other than Anaconda to manage your python environment, use the
information in environment.yml to identify which packages to install.

Install Egret

When installing Prescient from the latest version of the source code, Egret may need
to be installed manually because pre-release versions of Prescient sometimes depend
on pre-release versions of EGRET. Install EGRET from source according to the instructions
here <https://github.com/grid-parity-exchange/Egret/blob/main/README.md>.

Install the Prescient python package

The steps above configure a python environment with Prescient’s prerequisites. Now we must
install Prescient itself. From the prescient python environment, issue the following command:

pip install -e .

This will update the active python environment to include Prescient’s source code. Any changes to Prescient
source code will take affect each time Prescient is run.

This command will also install a few utilities that Prescient users may find useful,
including runner.py (see Running Prescient).

Verify your installation

Prescient is packaged with tests to verify it has been set up correctly. To execute the tests, issue the following command:

pytest -v prescient/simulator/tests/test_simulator.py

This command runs the tests using the CBC solver and will fail if you haven’t installed CBC. The tests can take
as long as 30 minutes to run, depending on your machine. If Prescient was installed correctly then all tests should pass.

 Installing Specific MILP Solvers
Prescient uses a mixed-integer linear programming (MILP) solver to make
dispatch and unit commitment decisions. Before running Prescient, a solver
must be installed and available to Pyomo [https://pyomo.readthedocs.io].
Installation guidance for a number of common solvers is found below.

Solvers

	CBC

	Gurobi

	CPLEX

	Xpress

The choice of solver often comes down to cost. CBC is free, but is typically
slower than commercial alternatives. Commercial solvers are faster, but
require a license and may require additional configuration. Some solvers
offer free licenses for academic or research use. Check with the appropriate
vendor for details.

CBC

CBC is a free, open-source MILP solver. On Linux and Mac platforms, CBC
can be installed using Anaconda:

conda install -c conda-forge coincbc

Binaries for additional platforms, including Windows, may be available from
https://github.com/coin-or/Cbc/releases. When installing CBC manually, you
may need to modify your path to ensure the cbc executable is available on
the command line.

CBC is the solver Prescient uses for automated tests on github.

Gurobi

Gurobi is a highly regarded commercial solver. Gurobi requires a valid
license to be used by Prescient. See the documentation on the
Gurobi [https://gurobi.com] website for instructions on how to acquire
and install a license.

Python bindings for Gurobi can be installed via conda:

conda install -c gurobi gurobi

or via pip:

pip install gurobi

Depending on your license, you may not be able to use the latest version
of the solver. A specific release can be installed as follows:

conda install -c gurobi gurobi=8

CPLEX

CPLEX is a high performance solver with both free and paid versions
available. The free version, called the Community Edition, can be
installed using pip:

pip install cplex

The free CPLEX Community Edition has limits on model size and may not be
sufficient for your models. To use the commercial edition, you must
acquire a CPLEX license and install the CPLEX software suite. After installing
CPLEX, you must then install Python bindings for CPLEX into your python
environment following the instructions found
here [https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-setting-up-python-api].

Xpress

Xpress Python bindings are available through conda:

conda install -c fico-xpress xpress

or from PyPI using pip:

pip install xpress

Depending on your license, you may need to install a specific version of the
solver, e.g.,

pip install xpress==8.8.6

Running Prescient

There are three ways to launch and run Prescient:

	With a configuration file, using runner.py

	With command line options, using the prescient.simulator module

	From python code, using in-code configuration

In all three cases, the analyst supplies configuration values that
identify input data and dictate which options to use during
the Prescient simulation. Configuration options can be specified in
a configuration file, on the command line, in-code, or a combination
of these methods, depending on how Prescient is launched.

To see what configuration options are available, see Configuration Options.

Launch with runner.py

Prescient can be run using runner.py, a utility which is installed
along with Prescient (see Install Egret).
Before executing runner.py, you must create a configuration file
indicating how Prescient should be run. Here is an example of a configuration
file that can be used with runner.py:

command/exec simulator.py
--data-directory=example_scenario_input
--output-directory=example_scenario_output
--input-format=rts-gmlc
--run-sced-with-persistent-forecast-errors
--start-date=07-11-2024
--num-days=7
--sced-horizon=1
--sced-frequency-minutes=10
--ruc-horizon=36

Because runner.py can potentially be used for more than launching
Prescient, the first line of the configuration file must match the line
shown in the example above. Otherwise runner.py won’t know that you
intend to run Prescient.

All subsequent lines set the value of a configuration option. Configuration
options are described in Configuration Options.

Once you have the configuration file prepared, you can launch Prescient
using the following command:

runner.py config.txt

where config.txt should be replaced with the name of your configuration file.

Launch with the prescient.simulator module

Another way to run Prescient is to execute the prescient.simulator module:

python -m prescient.simulator <options>

where options specifies the configuration options for the run. An example might
be something like this:

python -m prescient.simulator --data-directory=example_scenario_input --output-directory=example_scenario_output --input-format=rts-gmlc --run-sced-with-persistent-forecast-errors --start-date=07-11-2024 --num-days=7 --sced-horizon=1 --sced-frequency-minutes=10 --ruc-horizon=36

Configuration options can also be specified in a configuration file:

python -m prescient.simulator --config-file=config.txt

You can combine the –config-file option with other command line options. The contents of the configuration
file are effectively inserted into the command line at the location of the –config-file option. You can
override values in a configuration file by repeating the option at some point after the –config-file option.

Running the prescient.simulator module allows you to run Prescient without explicitly installing it, as long
as Prescient is found in the python module search path.

Running Prescient from python code

Prescient can be configured and launched from python code:

from prescient.simulator import Prescient

Prescient().simulate(
 data_path='deterministic_scenarios',
 simulate_out_of_sample=True,
 run_sced_with_persistent_forecast_errors=True,
 output_directory='deterministic_simulation_output',
 start_date='07-10-2020',
 num_days=7,
 sced_horizon=4,
 reserve_factor=0.0,
 deterministic_ruc_solver='cbc',
 sced_solver='cbc',
 sced_frequency_minutes=60,
 ruc_horizon=36,
 enforce_sced_shutdown_ramprate=True,
 no_startup_shutdown_curves=True)

The code example above creates an instance of the Prescient class and passes
configuration options to its simulate() method. An alternative is to set
values on a configuration object, and then run the simulation after configuration
is done:

from prescient.simulator import Prescient

p = Prescient()

config = p.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'
config.start_date='07-10-2020'
config.num_days=7
config.sced_horizon=4
config.reserve_factor=0.0
config.deterministic_ruc_solver='cbc'
config.sced_solver='cbc'
config.sced_frequency_minutes=60
config.ruc_horizon=36
config.enforce_sced_shutdown_ramprate=True
config.no_startup_shutdown_curves=True

p.simulate()

A third option is to store configuration values in a dict, which can potentially
be shared among multiple runs:

from prescient.simulator import Prescient

options = {
 'data_path':'deterministic_scenarios',
 'simulate_out_of_sample':True,
 'run_sced_with_persistent_forecast_errors':True,
 'output_directory':'deterministic_simulation_output'
}

Prescient().simulate(**options)

These three methods can be used together quite flexibly. The example below
demonstrates a combination of approaches to configuring a prescient run:

from prescient.simulator import Prescient

simulator = Prescient()

Set some configuration options using the simulator's config object
config = simulator.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'

Others will be stored in a dictionary that can
potentially be shared among multiple prescient runs
options = {
 'start_date':'07-10-2020',
 'sced_horizon':4,
 'reserve_factor':0.0,
 'deterministic_ruc_solver':'cbc',
 'sced_solver':'cbc',
 'sced_frequency_minutes':60,
 'ruc_horizon':36,
 'enforce_sced_shutdown_ramprate':True,
 'no_startup_shutdown_curves':True,
}

And finally, pass the dictionary to the simulate() method,
along with an additional function argument.
simulator.simulate(**options, num_days=7)

Configuration Options

	Overview

	Option Data Types

	List of Configuration Options

Overview

Prescient configuration options are used to indicate how
the Prescient simulation should be run. Configuration
options can be specified on the command line, in a text
configuration file, or in code, depending on how Prescient
is launched (see Running Prescient).

Each configuration option has a name, a data type, and a default value.
The name used on the command line and the name used in code vary slightly.
For example, the number of days to simulate is specified as --num-days
on the command line, and num_days in code.

Option Data Types

Most options use self-explanatory data types like String,
Integer, and Float, but some data types require more
explanation and may be specified in code in ways that are unavailable
on the command line:

Configuration Data Types

	Data type

	Command-line/config file usage

	In-code usage

	Path

	A text string that refers to a file or folder. Can be
relative or absolute, and may include special characters
such as ~.

	Same as command-line

	Date

	A string that can be converted to a date, such as 1776-07-04.

	Either a string or a datetime object.

	Flag

	Simply include the option to set it to true. For example, the command
below sets simulate_out_of_sample to true:

runner.py --simulate-out-of-sample

	Set the option by assigning True or False:

config.simulate_out_of_sample = True

	Module

	Refer to a python module in one of the following ways:

	The name of a python module (such as prescient.simulator.prescient)

	The path to a python file (such as prescient/simulator/prescient.py)

	In addition to the two string options available to the command-line,
code may also use a python module object. For example:

import my_custom_data_provider
config.data_provider = my_custom_data_provider

List of Configuration Options

The table below describes all available configuration options.

Configuration Options

	Command-line Option

	In-Code Configuration Property

	Argument

	Description

	--config-file

	config_file

	Path. Default=None.

	Path to a file holding configuration options. Can be absolute or
relative. Cannot be set in code directly on a configuration object, but
can be passed to a configuration object’s parse_args() function:

p = Prescient()
p.config.parse_args(["--config-file", "my-config.txt"])

See Launch with runner.py for a description of
configuration file syntax.

	General Options

	
	
	

	--start-date

	start_date

	Date. Default=2020-01-01.

	The start date for the simulation.

	--num-days

	num_days

	Integer. Default=7

	The number of days to simulate.

	Data Options

	
	
	

	--data-path

or

--data-directory

	data_path

	Path. Default=input_data.

	Path to a file or folder where input data is located. Whether it
should be a file or a folder depends on the input format. See Input Data.

	--input-format

	input_format

	String. Default=rts_gmlc.

	The format of the input data. Valid values are dat and rts_gmlc.
Ignored when using a custom data provider. See Input Data.

	--data-provider

	data_provider

	Module. Default=No custom data provider.

	A python module with a custom data provider that will supply
data to Prescient during the simulation. Don’t specify this option
unless you are using a custom data provider; use data_path and
input_format instead.
See Custom Data Providers.

	--output-directory

	output_directory

	Path. Default=outdir.

	The path to the root directory to which all generated simulation
output files and associated data are written.

	RUC Options

	
	
	

	--ruc-every-hours

	ruc_every_hours

	Integer. Default=24

	How often a RUC is executed, in hours. Default is 24.
Must be a divisor of 24.

	--ruc-execution-hour

	ruc_execution_hour

	Integer. Default=16

	Specifies an hour of the day the RUC process is executed.
If multiple RUCs are executed each day (because ruc_every_hours
is less than 24), any of the execution times may be specified.
Negative values indicate hours before midnight, positive after.

	--ruc-horizon

	ruc_horizon

	Integer. Default=48

	The number of hours to include in each RUC.
Must be >= ruc_every_hours and <= 48.

	--ruc-prescience-hour

	ruc_prescience_hour

	Integer. Default=0.

	The number of initial hours of each RUC in which linear blending of
forecasts and actual values is done, making some near-term
forecasts more accurate.

	--run-ruc-with-next-day-data

	run_ruc_with_next_day_data

	Flag. Default=false.

	If false (the default), never use more than 24 hours of
forecast data even if the RUC horizon is longer than 24
hours. Instead, infer values beyond 24 hours.

If true, use forecast data for the full RUC horizon.

	--simulate-out-of-sample

	simulate_out_of_sample

	Flag. Default=false.

	If false, use forecast input data as both forecasts and actual
values; the actual value input data is ignored.

If true, values for the current simulation time are taken from
the actual value input, and actual values are used to blend
near-term values if ruc_prescience_hour is non-zero.

	--ruc-network-type

	ruc_network_type

	String. Default=ptdf.

	Specifies how the network is represented in RUC models. Choices are:

	ptdf – power transfer distribution factor representation

	btheta – b-theta representation

	--ruc-slack-type

	ruc_slack_type

	String. Default=every-bus.

	Specifies the type of slack variables to use in the RUC model formulation.
Choices are:

	every-bus – slack variables at every system bus

	ref-bus-and-branches – slack variables at only reference bus and each system branch

	--deterministic-ruc-solver

	deterministic_ruc_solver

	String. Default=cbc.

	The name of the solver to use for RUCs.

	--deterministic-ruc-solver-options

	deterministic_ruc_solver_options

	String. Default=None.

	Solver options applied to all RUC solves.

	--ruc-mipgap

	ruc_mipgap

	Float. Default=0.01.

	The mipgap for all deterministic RUC solves.

	--output-ruc-initial-conditions

	output_ruc_initial_conditions

	Flag. Default=false.

	Print initial conditions to stdout prior to each RUC solve.

	--output-ruc-solutions

	output_ruc_solutions

	Flag. Default=false.

	Print RUC solution to stdout after each RUC solve.

	--write-deterministic-ruc-instances

	write_deterministic_ruc_instances

	Flag. Default=false.

	Save each individual RUC model to a file. The date and
time the RUC was executed is indicated in the file name.

	--deterministic-ruc-solver-plugin

	deterministic_ruc_solver_plugin

	Module. Default=None.

	If the user has an alternative method to solve
RUCs, it should be specified here, e.g.,
my_special_plugin.py.

Note

This option is ignored if --simulator-plugin is used.

	SCED Options

	
	
	

	--sced-frequency-minutes

	sced_frequency_minutes

	Integer. Default=60.

	How often a SCED will be run, in minutes.
Must divide evenly into 60, or be a multiple of 60.

	--sced-horizon

	sced_horizon

	Integer. Default=1

	The number of time periods to include in each SCED.
Must be at least 1.

	--run-sced-with-persistent-forecast-errors

	run_sced_with_persistent_forecast_errors

	Flag. Default=false.

	If true, then values in SCEDs use persistent forecast errors.
If false, all values in SCEDs use actual values for all time
periods, including future time periods.
See Forecast Smoothing.

	--enforce-sced-shutdown-ramprate

	enforce_sced_shutdown_ramprate

	Flag. Default=false.

	Enforces shutdown ramp-rate constraints in the SCED.
Enabling this option requires a long SCED look-ahead
(at least an hour) to ensure the shutdown ramp-rate
constraints can be statisfied.

	--sced-network-type

	sced_network_type

	String. Default=ptdf.

	Specifies how the network is represented in SCED models. Choices are:

	ptdf – power transfer distribution factor representation

	btheta – b-theta representation

	--sced-slack-type

	sced_slack_type

	String. Default=every-bus.

	Specifies the type of slack variables to use in SCED models. Choices are:

	every-bus – slack variables at every system bus

	ref-bus-and-branches – slack variables at only reference bus and each system branch

	--sced-solver

	sced_solver

	String. Default=cbc.

	The name of the solver to use for SCEDs.

	--sced-solver-options

	sced_solver_options

	String. Default=None.

	Solver options applied to all SCED solves.

	--print-sced

	print_sced

	Flag. Default=false.

	Print results from SCED solves to stdout.

	--output-sced-initial-conditions

	output_sced_initial_conditions

	Flag. Default=false.

	Print SCED initial conditions to stdout prior to each solve.

	--output-sced-loads

	output_sced_loads

	Flag. Default=false.

	Print SCED loads to stdout prior to each solve.

	--write-sced-instances

	write_sced_instances

	Flag. Default=false.

	Save each individual SCED model to a file. The date and
time the SCED was executed is indicated in the file name.

	Output Options

	
	
	

	--disable-stackgraphs

	disable_stackgraphs

	Flag. Default=false.

	Disable stackgraph generation.

	--output-max-decimal-places

	output_max_decimal_places

	Integer. Default=6.

	The number of decimal places to output to summary files.
Output is rounded to the specified accuracy.

	--output-solver-logs

	output_solver_logs

	Flag. Default=false.

	Whether to print solver logs to stdout during execution.

	Miscellaneous Options

	
	
	

	--reserve-factor

	reserve_factor

	Float. Default=0.0.

	The reserve factor, expressed as a constant fraction of demand, for
spinning reserves at each time period of the simulation. Applies to
both RUC and SCED models.

	--no-startup-shutdown-curves

	no_startup_shutdown_curves

	Flag. Default=False.

	If true, then do not infer startup/shutdown ramping curves when starting-up
and shutting-down thermal generators.

	--symbolic-solver-labels

	symbolic_solver_labels

	Flag. Default=False.

	Whether to use symbol names derived from the model when interfacing with
the solver.

	--enable-quick-start-generator-commitment

	enable_quick_start_generator_commitment

	Flag. Default=False.

	Whether to allow quick start generators to be committed if load shedding
would otherwise occur.

	Market and Pricing Options

	
	
	

	--compute-market-settlements

	compute_market_settlements

	Flag. Default=False.

	Whether to solve a day-ahead market as well as real-time market and
report the daily profit for each generator based on the computed prices.

	--day-ahead-pricing

	day_ahead_pricing

	String. Default=aCHP.

	The pricing mechanism to use for the day-ahead market. Choices are:

	LMP – locational marginal price

	ELMP – enhanced locational marginal price

	aCHP – approximated convex hull price.

	--price-threshold

	price_threshold

	Float. Default=10000.0.

	Maximum possible value the price can take. If the price exceeds this
value due to Load Mismatch, then it is set to this value.

	--reserve-price-threshold

	reserve_price_threshold

	Float. Default=10000.0.

	Maximum possible value the reserve price can take. If the reserve price
exceeds this value, then it is set to this value.

	Plugin Options

	
	
	

	--plugin

	plugin

	Module. Default=None.

	Python plugins are analyst-provided code that Prescient calls at
various points in the simulation process. See Customizing Prescient with Plugins for
details.

After Prescient has been initialized, the configuration object’s
plugin property holds plugin-specific setting values.

	--simulator-plugin

	simulator_plugin

	Module. Default=None.

	A module that implements the engine interface. Use this option
to replace methods that setup and solve RUC and SCED models with
custom implementations.

Input Data

Standard Input

Prescient requires information about the system being studied, such as the generators,
buses, loads, and so on. This information is typically read into Prescient from a
collection of CSV files in a format similar to that used by
RTS-GMLC [https://github.com/GridMod/RTS-GMLC/blob/master/RTS_Data/SourceData/README.md].
See The CSV Input File Format reference for a detailed description
of CSV input files and their contents.

Input files are placed together into a single directory. When running Prescient, the
directory containing the input files is specified using the –data-path configuration option.
Prescient will look in the input directory for files that follow the standard naming convention,
such as gen.csv, branch.csv, and so on.

Custom Data Providers

As an alternative to reading data from the standard CSV input files, it is
possible to provide data from other sources using a custom data provider.

Internally, Prescient stores data in the Egret [https://github.com/grid-parity-exchange/Egret]
format. A custom data provider is a python module that populates an Egret
model with initial data, and updates it with timeseries data as the simulation
progresses. For details, see Custom Input Data Providers in
the reference section.

To use a custom data provider, set the –data-provider configuration option
to the name or path of the desired python module.

Results and Statistics Output

Under Construction

Documentation coming soon

Customizing Prescient with Plugins

Under Construction

Documentation coming soon

Modeling Concepts

	The Prescient Simulation Cycle
	The RUC Cycle

	The SCED Cycle

	Time Series Data Streams
	Real-Time Data (Actuals)

	Forecasts

	Reserves and Ancillary Services

	Energy Markets and Pricing

The Prescient Simulation Cycle

[image: ../_images/RucScedCycle.png]
Prescient simulates the operation of a power generation network throughout a
study horizon, finding the set of operational choices that satisfy demand at
the lowest possible cost.

A Prescient simulation consists of two repeating cycles, one nested in the
other. The outer cycle is the Reliability Unit Commitment (RUC) planning
cycle, which schedules changes in dispatchable generators’ online status during
the cycle’s period. The inner, more frequent cycle is the Security Constrained
Economic Dispatch (SCED) cycle, which determines dispatch levels for
dispatchable generators.

The RUC Cycle

The RUC cycle periodically generates a RUC plan. A RUC plan consists of two types of
data: a unit commitment schedule and, optionally, a pricing schedule (when
compute-market-settlements is True).
The unit commitment schedule
indicates which dispatchable generators should be activated or deactivated during
upcoming time periods. The pricing schedule sets the contract price for expected power
delivery and for reserves (ancillary service products).
The RUC plan reflects the least expensive
way to satisfy predicted loads while honoring system constraints.

A new RUC plan is generated at regular intervals, at least once per day. A new
RUC plan always goes into effect at midnight of each day. If more than one
RUC plan is generated each day, then additional RUC plans take effect at equally
spaced intervals. For example, if 3 RUC plans are generated each day, then one
will go into effect at midnight, one at 8:00 a.m., and one at 4:00 p.m. Each
RUC plan covers the time period that starts when it goes into effect and ends
just as the next RUC plan becomes active.

A RUC plan is based on the current state of the system at the time the plan is
generated (particularly the current dispatch and up- or down-time for dispatchable
generators), and on forecasts for a number of upcoming time periods. The forecasts
considered when forming a RUC typically extend beyond the end of the RUC’s planning
period, to avoid poor choices at the end of the plan (“end effects”).

The simulation can be configured to generate RUC plans some number of hours before
they take effect. Each RUC plan still covers
the expected time period, from the time the plan takes effect until the next RUC plan
takes effect, but its decisions will be based on what is known at the time the RUC
plan is generated.

More information about RUCs is found in RUC Details.

The SCED Cycle

The SCED process selects dispatch levels for all active dispatchable generators
in the current simulation time period. Dispatch levels are determined using a process
that is very similar to that used to build a RUC plan. The current state of the
system, together with forecasts for a number of future time periods, are examined to
select dispatch levels that satisfy current loads and forecasted future loads at the
lowest possible cost.

The SCED cycle is more frequent than the RUC cycle, with new dispatch levels selected
at least once an hour. The SCED honors unit commitment decisions made in the RUC plan;
whether each generator is committed or not is dictatated by the RUC schedule
currently in effect.

Costs are determined with each SCED, based on dispatchable generation levels selected by
the SCED process, commitment and start-up decisions selected by the active RUC
plan, and actual demands and non-dispatchable generation levels for the current simulation
time. If market settlement is enabled, market-based generator revenue is also calculated.

More information about SCEDs is found in SCED Details.

See also

A more detailed description of the Prescient simulation process can be found
in the Detailed Prescient Simulation Lifecycle documentation.

More information about RUCs and SCEDs is available from
RUC Details and SCED Details.

Time Series Data Streams

Prescient uses time series data from two data streams, the real-time stream
(i.e., actuals) and the forecast stream. As their names imply, the real-time
stream includes data that the simulation should treat as actual values that
occur at specific times in the simulation, and the forecast stream includes
forecasts for time periods that have not yet occured in the simulation.

Both streams consist of time-stamped values for loads and non-dispatchable
generation data.

Real-Time Data (Actuals)

The real-time data stream provides data that the simulation should treat as
actual values. Real-time values are typically used only when the simulation reaches
the corresponding simulation time.

Real-time data can be provided at any time interval. The real-time data interval
generally matches the SCED interval
(see sced-frequency-minutes), but this is
not a requirement. If the SCED interval does not match the real-time interval
then real-time data will be interpolated or discarded as needed to match the SCED
interval.

Forecasts

Forecast data are provided by the forecast data stream. The frequency of data
provided through the forecast stream must be hourly.

New forecasts are retrieved each time a new RUC plan is generated. The
forecasts retrieved in a given batch are those required to satisfy the RUC horizon
(see ruc-horizon), starting with the RUC activation time.

Forecast Smoothing

As forecasts are retrieved from the forecast data stream, they may be adjusted so that
near-term forecasts are more accurate than forecasts further into the future. This serves
two purposes: first, to avoid large jumps in timeseries values due to inaccurate forecasts;
and second, to model how forecasts become more accurate as their time approaches.

The number of forecasts to be smoothed is determined by the
ruc-prescience-hour configuration option. Values for
the current simulation time are set equal to their actual value, ignoring data read from
the forecast stream. Values for ruc-prescience-hour hours after the current simulation
time are set equal to data read from the forecast stream. Between these two times,
values are a weighted average of the values provided by the actuals and forecast data
streams. The weights vary linearly with where the time falls between the current time
and the ruc prescience hour. For example, if ruc-prescience-hour is 8, then the adjusted
forecast for 2 hours after the current simulation time will be 0.25*forecast + 0.75*actual.

Note that blending weights are determined relative to the current simulation time when
the RUC is generated, not relative to the time the RUC goes into effect.

Real-Time Forecast Adjustments

Forecasts are adjusted further each time a SCED is run. This is done by comparing the forecast
for the current time with the actual value for the current time. The ratio of these two
values is calculated, then used as a scaling factor for forecast values. For example, if the
forecast for a value was 10% too high, all future forecasts for the same value are reduced by 10%.

Note

If run-sced-with-persistent-forecast-errors
is false, then SCEDs will use actual values for all time periods. Forecasts will still be used
for RUCs, but SCEDs will be based entirely on actual values, even for future time periods.

Reserves and Ancillary Services

Energy Markets and Pricing

Examples and Tutorials

Reference

	Input Data

	Detailed Prescient Simulation Lifecycle

	RUC Details

	SCED Details

	Plugins

	Python Classes and Functions

Input Data

	The CSV Input File Format

	Custom Input Data Providers

Input data is typically read from CSV files. See
The CSV Input File Format for the expected files
and their contents.

Data can also be read from custom sources. See Custom Input Data Providers.

The CSV Input File Format

The system being modeled by Prescient is read from a set of CSV files. The
CSV files and their format is based on the
RTS-GMLC format [https://github.com/GridMod/RTS-GMLC/blob/master/RTS_Data/SourceData/README.md].
Prescient uses only a subset of the columns present in RTS-GMLC format. This
document identifies the columns read by Prescient, their meaning, and how they
are represented in the Egret model used by Prescient at runtime. Any additional
columns be present in the input are ignored.

There are six required CSV files and two optional CSV file. Files must have the
names specified below. In addition to the 6 to 8 files identified below,
timeseries data is stored in an additional set of files you specify in
timeseries_pointers.csv. Documentation for each of the files is found
below:

	Required Files
	

	bus.csv

	branch.csv

	gen.csv

	reserves.csv

	simulation_objects.csv

	timeseries_pointers.csv

	Optional Files
	

	dc_branch.csv

	initial_status.csv

bus.csv

This file is used to define buses. Add one row for each bus in the system. Each
row in the CSV file will cause a bus dictionary object to be added to
['elements']['bus'] in the Egret model.

Each row with a non-zero MW Load and/or non-zero MVAR Load will also cause a
load to be added to ['elements']['load'] in Egret, and each row with a non-zero
MW Shunt G and/or non-zero MVAR Shunt B will cause a shunt to be added
to ['elements']['shunt'] in Egret.

bus.csv Columns

	Column Name

	Description

	Egret

	Bus ID

	A unique string identifier for the bus. This string is used to refer
to this bus in other CSV files.

	Not used by Egret except during parsing of CSV files.

	Bus Name

	A human-friendly unique string for this bus.

	Used as the bus name in Egret. Data for this bus is stored in a bus
dictionary stored at ['elements']['bus'][<Bus Name>].

This is also the name of the load, if a load is added for the bus (a load
is added if MW Load or MVAR Load is non-zero). The load dictionary is
stored at ['elements']['load'][<Bus Name>].

This is also the name of the shunt, if a shunt is added for the bus (a bus
is added if MW Shunt G or MVAR Shunt G is non-zero). The shunt
dictionary is stored at ['elements']['shunt'][<Bus Name>].

	BaseKV

	The bus base voltage. Must be non-zero positive.

	Stored in the Egret bus dictionary as base_kv.

	Bus Type

	The type of bus. Can be one of the following:

	PQ

	PV

	Ref

	Stored in Egret bus dictionary as matpower_bustype. The Ref bus type
is stored in Egret in all lower case (ref).

	MW Load

	Magnitude of the load on the bus.

	Stored in the Egret bus dictionary as p_load. A non-zero value causes
a load to be added; see Bus Loads.

	MVAR Load

	Magnitude of the reactive load on the bus.

	Stored in the Egret bus dictionary as q_load. A non-zero value causes
a load to be added; see Bus Loads.

	V Mag

	Voltage magnitude setpoint

	Stored in the Egret bus dictionary as vm.

	V Angle

	Voltage angle setpoint in degrees

	Stored in the Egret bus dictionary as va. If the Bus Type is Ref, this
value must be 0.0.

	Area

	The area the bus is in.

	Stored in the Egret bus dictionary as area. An area dictionary is added to the
Egret model for each unique area mentioned in the file. The Egret area dictionary
is found at ['elements']['area'][<Area>]. See Areas.

	Zone

	The zone the bus is in.

	Stored in the Egret bus dictionary as zone.

	MW Shunt G

	Optional.

	Stored in the shunt dictionary as gs. See Shunts.

	MVAR Shunt B

	Optional.

	Stored in the shunt dictionary as bs. See Shunts.

	va

	Reference bus angle. If the Bus Type is Ref, va is required and must
be zero.

	

Additional Bus Values

The following values are automatically added to the bus dictionary:

	v_min = 0.95

	v_max = 1.05

Bus Loads

If a bus has a non-zero MW Load or MVAR Load, a load dictionary is added
to Egret at ['elements']['load'][<Bus Name>]. The load dictionary will
have the following values taken from bus.csv:

	bus = Bus Name

	p_load = MW Load

	q_load = MVAR Load

	area = Area

	zone = Zone

An additional property is automatically added, always with the same value:

	in_service = true

Loads can (and usually do) vary throughout the study horizon. Variable loads are
defined using a timeseries (see timeseries_pointers.csv).

Shunts

If a bus has a non-zero MW Shunt G or a non-zero MVAR Shunt B, a shunt
dictionary is added to Egret at ['elements']['shunt'][<Bus Name>]. The shunt
dictionary will have the following values taken from bus.csv:

	bus = Bus Name

	gs = MW Shunt G

	bs = MVAR Shunt B

An additional property is automatically added, always with the same value:

	shunt_type = fixed

Areas

Each unique area mentioned in bus.csv leads to an area being created in
the Egret model at ['elements']['area'][<Area>], using the area
name as it appears in bus.csv.

branch.csv

This file defines branches - flow pathways between pairs of buses -
including lines and transformers. Add a row for each branch in the
system. Each row in the CSV file will cause a branch dictionary to be
added to ['elements']['branch'] in the Egret model.

ListTable

	Column Name

	Description

	Egret

	UID

	A unique string identifier for the branch.

	Used as the branch name in Egret. Data for this branch is stored in a
branch dictionary stored at ['elements']['branch'][<UID>].

	From Bus

	The Bus ID of one end of the branch

	The Bus Name of the bus with the corresponding Bus ID,
as entered in bus.csv, is stored in the Egret branch dictionary as
from_bus.

	To Bus

	The Bus ID of the other end of the branch

	The Bus Name of the bus with the corresponding Bus ID,
as entered in bus.csv, is stored in the Egret branch dictionary as
to_bus.

	R

	Branch resistance p.u.

	Stored in Egret bus dictionary as resistance.

	X

	Branch reactance p.u.

	Stored in the Egret bus dictionary as reactance.

	B

	Charging susceptance p.u.

	Stored in the Egret bus dictionary as charging_susceptance.

	Cont Rating

	Continuous flow limit in MW

	Stored in the Egret bus dictionary as rating_long_term. Optional.

	LTE Rating

	Non-continuous long term flow limit in MW

	Stored in the Egret bus dictionary as rating_short_term. Optional.

	STE Rating

	Short term flow limit in MW

	Stored in the Egret bus dictionary as rating_emergency. Optional.

	Tr Ratio

	Transformer winding ratio.

	If non-zero, branch is treated as a transformer. If blank or zero,
branch is considered a line. See Lines and Transformers below.

Additional Branch Values

The following values are automatically added to every branch dictionary
in the Egret model:

	in_service = true

	angle_diff_min = -90

	angle_diff_max = 90

	pf = null

	qf = null

	pt = null

	qt = null

Lines and Transformers

Each branch is either a line or a transformer. The type of branch is
determined by the Tr Ratio. If this field is blank or zero, the branch
is a line and the following property is added to the branch dictionary:

	branch_type = line

If the Tr Ratio is a non-zero value, the following properties are added
to the branch dictionary:

	branch_type = transformer

	transformer_tap_ratio = Tr Ratio

	transformer_phase_shift = 0

gen.csv

This file is where generators are defined. Add one row for each
generator in the model, including both thermal and renewable generators.

gen.csv Columns

	Column Name

	Description

	Egret

	GEN UID

	A unique string identifier for the generator.

	Used as the branch name in Egret. Data for this branch is stored in a
generator dictionary stored at ['elements']['generator'][<GEN UID>].

	Bus ID

	Bus ID of connecting bus

	The Bus Name of the bus with the matching Bus ID, as entered in
bus.csv, is stored in the Egret generator dictionary as bus.

	Unit Type

	The kind of generator

	Typically stored in unit_type. Has additional side effects. See
Generator Types below.

	Fuel

	The type of fuel used by the generator

	Stored in the generator dictionary as fuel

	MW Inj

	Real power injection setpoint

	Stored in the generator dictionary as pg

	MVAR Inj

	Reactive power injection setpoint

	Stored in the generator dictionary as qg

	PMin MW

	Minimum stable real power injection

	May be left blank. If present, stored in the generator dictionary in
multiple places: p_min, startup_capacity, shutdown_capacity,
and p_min_agc

	PMax MW

	Maximum stable real power injection

	May be left blank. If present, stored in the generator dictionary in
multiple places: p_max and p_max_agc

	QMin MVAR

	Minimum stable reactive power injection

	May be left blank. If present, stored in the generator dictionary as
q_min

	QMax MVAR

	Maximum stable reactive power injection

	May be left blank. If present, stored in the generator dictionary as
q_max

	Ramp Rate MW/Min

	Maximum ramp up and ramp down rate

	Thermal generators only. May be left blank. If present, stored in the
generator dictionary in multiple places: ramp_q and ramp_agc

	Output_pct_0 through Output_pct_<N>

	The fraction of PMax MW for fuel curve point i (See Fuel Curves below).

	Thermal generators only. See Fuel Curves below.

	HR_avg_0

	Average heat rate between 0 and the first fuel curve point, in BTU/kWh

	Thermal generators only. See Fuel Curves below.

	HR_incr_1 through HR_incr_<N>

	Additional heat rate between fuel curve point i-1 and fuel curve point
i, in BTU/kWh.

	Thermal generators only. See Fuel Curves below.

	Fuel Price $/MMBTU

	Fuel price in Dollars per million BTU

	Thermal generators only. Stored in the generator dictionary as
fuel_cost.

	Non Fuel Start Cost $

	Dollars expended each time the generator starts up.

	Thermal generators only. Stored in the generator dictionary as
non_fuel_startup_cost.

	Min Down Time Hr

	Minimum off time required before unit restart

	Thermal generators only. Stored in the generator dictionary as
min_down_time.

	Min Up time Hr

	Minimum off time required before unit restart

	Thermal generators only. Stored in the generator dictionary as
min_up_time.

	Start Time Cold Hr

	Time since shutdown after which a cold start is required

	Thermal generators only. See Startup Curves below

	Start Time Warm Hr

	Time since shutdown after which a warm start is required

	Thermal generators only. See Startup Curves below

	Start Time Hot Hr

	Time since shutdown after which a hot start is required

	Thermal generators only. See Startup Curves below

	Start Heat Cold MBTU

	Fuel required to startup from cold

	Thermal generators only. See Startup Curves below

	Start Heat Warm MBTU

	Fuel required to startup from warm

	Thermal generators only. See Startup Curves below

	Start Heat Hot MBTU

	Fuel required to startup from hot

	Thermal generators only. See Startup Curves below

Additional Generator Values

The following values are automatically added to all generator
dictionaries:

	in_service = true

	mbase = 100.0

	area = Area of the bus identified by Bus ID

	zone = Zone of the bus identified by Bus ID

If the generator is a thermal generator, these additional values are
also added:

	agc_capable = true

	shutdown_cost = 0.0

	ramp_up_60min = 60 * ramp_q

	ramp_down_60min = 60 * ramp_q

Generator Types

The Unit Type column determines whether the generator will be treated as
thermal or renewable, or if the generator will be skipped.

If the Unit Type is Storage or CSP, the generator is skipped and left
out of the Egret model.

If the Unit Type is WIND, HYDRO, RTPV, or PV, then these values are set:

	generator_type = renewable

	unit_type = Unit Type

If the Unit Type is ROR, then these values are set:

	generator_type = renewable

	unit_type = HYDRO

For all other values of Unit Type, these properties are set:

	generator_type = thermal

	unit_type = Unit Type

Fuel Curves

Fuel curves describe the amount of fuel consumed by the generator when
producing different levels of power. A fuel curve is defined by a set of
points, where each point identifies a power output rate and the amount
of fuel required to generate that amount of power.

Power output rates are defined by the Output_pct_<N> columns, such as
Output_pct_0, Output_pct_1, and so on. You can include any number of
Output_pct_<N> columns, but they must be numbered sequentially (0, 1,
2, and so on, up to the desired number of fuel curve points). The value
of each Output_pct_<N> column is a fraction of the maximum real power
output (PMax MW), ranging from 0 to 1. Values must be in ascending
order: Output_pct_1 must be greater than Output_pct_0,
Output_pct_2 must be greater than Output_pct_1, and so on.

Corresponding fuel requirements are defined by the HR_avg_0 column (for
fuel curve point 0) and by HR_incr_<N> columns (for fuel curve points 1
and above). HR_avg_0 is the fuel required to achieve Output_pct_0.
HR_incr_1 is the amount of additional fuel (the fuel increment) required to achieve
Output_pct_1, HR_incr_2 is the amount of additional fuel required to go
from Output_pct_1 to Ouput_pct_2, and so on. The fuel consumption curve
is required to be convex above point 0; the slope of lines between fuel curve points
must increase as you move to the right. Values of HR_incr_* must be chosen to
reflect this requirement.

Within each row, the number of non-blank HR_* columns must must match
the number of non-blank Output_pct_<N> columns. However, different rows
can have different numbers of points in their fuel curves. Columns
beyond the number of points in the fuel curve should be left blank.

The diagram below shows an example of a fuel curve with 4 points. The
output percentage increases along the X-axis with each successive point.
Fuel consumption values on the Y-axis are calculated by adding fuel
increments to the previous Y values. Note that the fuel consumption curve
is convex above Output_pct_0.

[image: ../../../_images/Example-Fuel-Curve.png]
Fuel curves are stored in the Egret generator dictionary as p_fuel.
Values in the fuel curve are in MW (rather than output percent) and
MMBTU/hr (rather than BTU/kWh). Fuel costs are calculated by
interpolating the fuel curve for the current output rate, then
multiplying by the fuel_cost.

Startup Curves

Startup curves define the amount of fuel required to start a generator,
based on how long it has been since the generator was shut off.

	If the time since the generator was most recently shut down is less
than either the Min Down Time Hr or the Start Time Hot Hr,
the generator cannot yet be restarted.

	If the time since shutdown is at least Min Down Time Hr and
Start Time Hot Hr, but less than Start Time Warm Hr,
then the generator can do a hot start, consuming Start Heat Hot MMBTU.

	If the time since shutdown is at least Start Time Warm Hr, but less
than Start Time Cold Hr, then the generator can do a warm start,
consuming Start Heat Warm MMBTU.

	If the time since shutodown is at least Start Time Cold Hr, then the
generator can do a cold start, consuming Start Heat Cold MMBTU.

reserves.csv

This file defines the reserve products to be included in the model.
Reserve products impose requirements on surplus generation capacity
within a particular area under certain conditions. Each reserve product
has a category and an area. The reserve product’s category identifies
the conditions under which its requirements apply, and its area
identifies the region where the requirements apply.

There are 5 supported reserve product categories. The table below shows
the name of reserve product categories on the left as they appear in CSV
input files, and the corresponding name in Egret on the right.

Reserve Product Categories

	CSV Reserve Product Category

	Egret reserve product name

	Spin_Up

	spinning_reserve_requirement

	Reg_Up

	regulation_up_requirement

	Reg_Down

	regulation_down_requirement

	Flex_Up

	flexible_ramp_up_requirement

	Flex_Down

	flexible_ramp_down_requirement

Each reserve product’s category and applicable area are embedded in its
name, as <category>_R<area>. For example, a spinning reserve requirement
for an area named "Area 1" would be named "Spin_Up_RArea 1".

reserves.csv Columns

	Column Name

	Description

	Egret

	Reserve Product

	The name of the reserve product, following the <category>_R<area>
naming convention.

	Added to the area’s Egret dictionary as the Egret reserve product
name.

	Requirement (MW)

	Magnitude of the reserve requirement. This value is ignored if there
is a timeseries associated with the reserve product.

	If honored, it is used as the value of the Egret reserve product name entry
in the area’s dictionary.

Reserve Requirement Magnitudes

The magnitude of each reserve requirement may be constant throughout the
entire simulation, or it may change as specified by a timeseries in
timeseries_pointers.csv. If the magnitude is constant, enter it in this
file as the Requirement (MW). If it varies during the study period,
associate a timeseries with the reserve product (see
timeseries_pointers.csv). In this case, the magnitude entered in this
file is discarded and is replaced with appropriate timeseries values.

Applicability to RUCs and SCEDs

Each category of reserve product may be configured to apply to RUC
plans, to SCED operations, or both. This is designated in
simulation_objects.csv. See that file’s documentation
for details.

simulation_objects.csv

This file is used to enter data about the data set as a whole. Each row
specifies a global parameter with two values, one that applies to
forecasts and another that applies to real-time data (actuals). The file
has three columns:

simulation_objects.csv Columns

	Column Name

	Description

	Simulation_Parameters

	Which global parameter is set by this row

	DAY_AHEAD

	The row’s value for forecast data and/or RUC plans

	REAL_TIME

	The row’s value as it applies to real-time data and/or SCED operations

The following values of Simulation_Parameter are supported:

Supported values of Simulation_Parameter in simulation_objects.csv

	Simulation_Parameter

	Required?

	Parameter Description

	DAY_AHEAD

	REAL_TIME

	Period_Resolution

	Yes

	The number of seconds between values in timeseries data files

	The number of seconds between values in DAY_AHEAD timeseries data
files

	The number of seconds between values in REAL_TIME timeseries data
files

	Reserve_Products

	No

	Which reserve products to enforce for RUC plans or SCED operations.
See Reserve_Products Details below.

	Which reserve products to enforce for RUC plans

	Which reserve products to enforce for SCED operations

Reserve_Products Details

Some categories of reserve products may apply to RUC formulations, while
others may apply to SCED formulations. This row allows you to configure
which reserve product categories apply to each formulation type. Reserve
product categories listed in the DAY_AHEAD column impose their
requirements on RUC formulations, and reserve product categories listed
in the REAL_TIME column impose their requirements on SCED formulations.

Specify applicable reserve product categories as a comma-separated list.
Only listed reserve product categories will be imposed on corresponding
formulations. Supported reserve products are Spin_Up, Reg_Up, Reg_Down,
Flex_Up, and Flex_Down.

This row is optional. If you leave the row out, all reserve categories
apply to both RUCs and SCEDs.

timeseries_pointers.csv

This file identifies where to find timeseries values, and which model
elements they apply to. Each row in the file identifies a model element
(such as a particular generator’s power output, or an area’s load),
whether the values are forecast or actual values, and what file holds
the values. The CSV file has the following columns:

timeseries_pointers.csv Columns

	Column Name

	Description

	Simulation

	Either DAY_AHEAD or REAL_TIME. If DAY_AHEAD, the values are forecasts
that inform RUC formulations. If REAL_TIME, the values are actual
values used in SCED formulations.

	Category

	What kind of object the data is for. Supported values are:

	Generator

	Area

	Reserve

	Object

	The name of the specific object the data is for

	Parameter

	The specific attribute of the object that the data is for

	Data File

	The path to the file holding the timeseries values.

The model element the data applies to is identified by the Category,
Object, and Parameter. Which parameters are supported depend on the
Category.

	If Category is Generator, then Object must be the name
of a generator as specified in the GEN UID column of gen.csv.
Parameter must be either PMax MW or PMin MW.

	If Category is Area, then Object must be an area name referenced in
bus.csv, and Parameter must be MW Load. The timeseries values specify
the load imposed on the area at each timestep.

	If Category is Reserve, then Object is a reserve product name in
<category>_R<area> format, and Parameter must be Requirement. The
timeseries values specify the magnitude of the reserve requirement
for the reserve product.

The Data File is the path to the CSV file holding timeseries values. The
path can be relative or absolute. If it is relative, it is relative to
the folder containing timeseries_pointers.csv.

Timeseries File Formats

There are two supported formats for timeseries files, columnar and 2D. A
columnar file has a row for each value in the timeseries, while a 2D
file has a row for each day and a column for each value within the day.
A columnar file can have multiple data columns for each row, allowing
data for multiple model elements to be stored in the same file. A 2D
file can only hold a single timeseries.

Both file formats store data at equally spaced time intervals. Each day
is split into periods, numbered 1 through N. The first period of each
day starts at midnight. The duration of each period is specified by the
Period_Resolution row in simulation_objects.csv. The number of periods
per day must add up to 24 hours per day. Note that DAY_AHEAD periods and
REAL_TIME periods often have different durations, so the appropriate the
number of periods per day may depend on whether the data are forecasts
or actuals.

Each file’s data must cover the time period from DATE_FROM to DATE_TO,
as specified in simulation_objects.csv, including the extra look-ahead
periods after DATE_TO.

Columnar Timeseries Files

A columnar timeseries file has one row per period. It has 4 columns that
identify the date and period of the row’s data, followed by any number
of data columns. The name of each data column must match the name of the
object the data pertains to, such as the name of the appropriate
generator. Here is an example of the first few rows of a columnar
timeseries file with data for two generators named Hydro1 and Hydro2:

Example Columnar Timeseries File

	Year

	Month

	Day

	Period

	Hydro1

	Hydro2

	2023

	4

	1

	1

	2.0152

	11.958

	2023

	4

	1

	2

	2.3055

	12.616

	…

	…

	…

	…

	…

	…

Note that the Year, Month, Day, and Period are
entered as integer values.

2D Timeseries Files

A 2D timeseries file holds data for a single timeseries in a 2D layout.
The file has Year, Month, and Day columns, followed by
one column per period in each day. For example, a file with hourly data
will have 27 columns: the Year, Month, and Day columns
followed by 24 period columns:

Example 2D Timeseries Data File

	Year

	Month

	Day

	1

	2

	…

	24

	2023

	4

	1

	1.989

	2.0152

	…

	1.958

	2023

	4

	2

	2 .015

	2.3055

	…

	2.616

	…

	…

	…

	…

	…

	…

	…

The name of each period column must be the period number, from 1 to N.

dc_branch.csv

This file is where DC branches are defined. Prescient has limited support
for DC branches, as indicated by the small number of columns in this file.

This file is optional; if the file does not exist, no DC branches are added
to the model. If the file exists, add a row for each DC branch in the model.
Each row in the file will cause a DC branch dictionary to be added to
['elements']['dc_branch'] in the Egret model.

dc_branch.csv Columns

	Column Name

	Description

	Egret

	UID

	A unique string identifier for the DC branch.

	Used as the branch name in Egret. Data for this branch is stored in a
branch dictionary located at ['elements']['dc_branch'][<UID>].

	From Bus

	The Bus ID of one end of the branch

	The Bus Name of the bus with the matching Bus ID, as
entered in bus.csv, is stored in the Egret branch dictionary as
from_bus.

	To Bus

	The Bus ID of the other end of the branch

	The Bus Name of the bus with the matching Bus ID, as
entered in bus.csv, is stored in the Egret branch dictionary as
to_bus.

	MW Load

	Power Demand in MW

	This value is repeated 3 times in the Egret dc_branch dictionary, as
rating_short_term, rating_long_term, and rating_emergency.

initial_status.csv

This file holds the initial state of each generator. It is an optional
file; defaults are used if the file is not present. The file contains a
header row and 1 to 3 data rows.

The header row consists of one column per generator, with the column
name being the name of the generator, as specified in the GEN UID
column of gen.csv.

The first data row is the status of each generator at the start of the
simulation period, where a positive number indicates how many time
periods the generator has been running, and a negative number indicates
how many time periods since the generator was shut down. The first row
must contain a value for every generator.

The second data row is the power output of each generator in the time
period just before the start of the simulation. This row can be left
blank for all generators, or should be populated for all generators.

The third data row is the reactive power of the generator in the time
period just before the start of the simulation. This row can be left
blank, or should be populated for all generators. If the second row was
left blank, then the third row must also be left blank. In other words,
the third row can hold data only if the second row also holds data.

Custom Input Data Providers

A custom data provider is a python module that provides data to Prescient
throughout its run. It is an alternative to the standard CSV input file
format typically used by Prescient.

The custom data provider python module must have a function called
get_data_provider(). This function must return an object that implements
the prescient.data.DataProvider abstract base class.

Internally, Prescient stores data in the Egret [https://github.com/grid-parity-exchange/Egret]
format. Each function in the prescient.data.DataProvider abstract base class
generates or manipulates an Egret model. Prescient will call these methods
to acquire initial data, and to request updates to data for specific time
periods.

For an example or a custom data provider, see the
example [https://github.com/grid-parity-exchange/Prescient/blob/main/prescient/simulator/tests/custom_data_provider.py]
in the source code, or examine one of the standard data providers [https://github.com/grid-parity-exchange/Prescient/tree/main/prescient/data/providers].

To use a custom data provider, set the –data-provider configuration option
to the custom provider’s python module.

Detailed Prescient Simulation Lifecycle

As Prescient simulates the operation of a power generation network, the simulation
follows a repeating cycle of Reliability Unit Commitment (RUC) plans and Security
Constrained Economic Dispatch (SCED) plans. This cycle is described at a high level
in the concepts section (see The Prescient Simulation Cycle). This page
provides a more detailed description of the simulation process, including plugin
points that provide opportunities for custom code to observe or modify the
simulation.

[image: ../_images/PrescientSimulationCycle.png]
A Prescient simulation consists of three phases: startup, the main simulation
loop, and finalization. Each phase includes one or more tasks that are executed
in a specific order. In the case of the main simulation loop, these tasks are
carried out multiple times, once per SCED during the simulation period.

The Prescient simulation lifecycle is executed when you run the Prescient
command-line application, or in code when the simulate() method is called on
a prescient.simulator.Prescient object.

Startup

The startup phase consists of one-time activities that occur before the main
simulation loop begins.

Pre-Simulation Startup

During the pre-simulation startup task, Prescient carries out activities such
as parsing options, initializing plugins, and setting up data structures.

First, any plugins specified in the simulation configuration are given an
opportunity to register their callbacks. See Identifying Plugins and
Plugin Module Initialization.

After plugins have been initialized, two plugin callbacks are called:

	The options_preview Callback

	The initialization Callback

After callbacks have been called, the current simulation time is set to midnight of
the simulation start date.

The Main Simulation Loop

The main simulation loop is executed once for every simulation time step, where
the simulation time step duration is the
SCED frequency. The first simulation time
step occurs at midnight of the first day (midnight is the beginning of the day,
not the end). The last simulation time step occurs at the end of the final day
of the simulation, just before midnight of the next day.

A SCED is solved every time through the loop. Some times through the loop, a RUC may
also be generated and/or activated.

Generate RUC

If the current simulation time is a RUC generation hour, a new RUC is generated.
This is either the same timestep the RUC will be activated, or an earlier
timestep if a RUC delay has been specified. See RUC Details for information on the
timing and frequency of RUC generation and its relationship to RUC activation.

Note that the initial RUC is always generated on the first timestep of the
simulation, even if Prescient has been configured to generate other RUCs earlier
than they are activated.

If a RUC is generated before its activation time, the first step of the RUC
generation process is to solve a SCED-like model to estimate what the state of the
system will be at the RUC activation time. Solving this model causes a single
callback to be called:

	The after_get_initial_model_for_sced Callback

This callback is only called if the RUC is generated in a different timestep than
the RUC will be activated. The initial RUC never triggers this callback.

As part of the RUC generation process, forecasts and actual values for upcoming
periods are retrieved from the data source and loaded into Egret model. The
callbacks listed below are called as a new batch of values is about to be loaded,
giving plugins an opportunity to load any custom data they may need:

	The after_get_initial_model_for_simulation_actuals Callback

	The after_get_initial_model_for_ruc Callback

Finally, the RUC itself is generated and solved. The following callbacks will be
called:

	The before_ruc_solve Callback

	The after_ruc_generation Callback

Activate RUC

If the current simulation time is a RUC activation time, the most recently
generated RUC will be activated. Activating a RUC simply marks the point in the
simulation when the RUC’s decisions first begin to be followed. RUC activation
hours occur at regular intervals starting at midnight of the first day and repeating
at the RUC frequency for the rest of the simulation.
See RUC Details for information on the timing and frequency of RUC
activation.

The following callback is called each time a RUC is activated:

	The after_ruc_activation Callback

Deploy SCED

A SCED is generated, solved, and applied every simulation timestep.
When a SCED is applied, generator setpoints are set for the current simulation time.
See SCED Details.

The following callbacks are called each time a SCED is deployed:

	The after_get_initial_model_for_sced Callback

	The before_operations_solve Callback

	The after_operations Callback

	The update_operations_stats Callback

Finalize Timestep

After SCED deployment is complete, statistics for the timestep are published
and the simulation clock advances to the time of the next SCED, as determined
by the SCED frequency.

Several callbacks related to statistics may be called at this time. Calling a
callback related to statistics is referred to as “publishing” statistics.

Operations statistics (statistics about SCED results) are published every timestep
by calling the following callback:

	Operations Statistics

If the timestep is the final timestep in a given hour, hourly statistics are
published:

	Hourly Statistics

If the timestep is the final timestep in a given day, daily statistics are
published:

	Daily Statistics

The simulation clock is advanced after all relevant statistics have been published.
If the new time is later than the simulation end date, the main simulation loop
ends and Prescient moves to the Finalization stage. Otherwise Prescient repeats the
main simulation loop for the new timestep.

Finalization

The finalization phase consists of tasks that occur once at the end of the
simulation.

Finalize Simulation

Statistics for the simulation as a whole are published during finalization:

	Overall Statistics

Another callback is called to notify callbacks that the simulation is complete,
giving plugins a chance to cleanly shut down:

	The finalization Callback

RUC Details

A Reliability Unit Commitment plan, or RUC, determines which dispatchable
generators will be active during a portion of the simulation. RUCs work in
conjunction with SCEDs (Security Constraint Economic
Dispatch plans) to simulate operation of the power network.

Each RUC covers a specific period within the simulation. For each hour within its
applicable period, a RUC dictates whether each dispatchable generator is on or off.
The unit commitment decisions in a RUC are made by building a model which reflects
the current state of the power network and forecasts for future loads and future
renewable power generation. The model is solved to find the most cost-efficient way
to satisfy forecasted loads while honoring system constraints such as reserve
requirements and line limits.

RUCs may also include pricing schedules. This option is enabled when the
compute-market-settlements option
is set to true. The pricing schedule sets the contract price for expected power
delivery and for reserves (ancillary service products).

A new RUC is generated at regular intervals. The number of hours between RUCs is
called the RUC interval. The RUC interval also
dictates how many hours each RUC is active. The RUC interval must be between 1 and
24 hours and must divide evenly into 24 hours.

The number of hours of forecast data to include in the RUC model is determined by
the RUC horizon. The RUC horizon must be at least
equal to the RUC interval, but typically extends further into the future to avoid
poor choices at the end of the plan (“end effects”). A commonly used RUC horizon is
48 hours.

Each RUC may be generated just as its applicable period is about to begin, or it
may be generated in advance. For this reason, Prescient splits RUC management
into two phases: RUC generation and RUC activation. In the RUC generation phase, a
RUC model is created and optimized, resulting in a RUC plan. In the RUC activation
phase, the commitment decisions identified in the RUC plan begin to take effect.

A new RUC is always activated at the beginning of each day, and at each time that
is a multiple of the RUC interval. For example, if the RUC interval is 8 hours,
then a new RUC is activated each day at midnight, 8:00 a.m., and 4:00 p.m.

To generate RUCs in advance of their activation time, set the RUC execution
hour to indicate the time of day that one of the
day’s RUC should be generated. If the specified time falls on a scheduled RUC
activation time, then RUCs will not be generated in advance. Otherwise, the
specified time is interpreted as the time to generate the next scheduled RUC. For
example, if the RUC interval is 8 hours and the RUC execution hour is 14 (2:00
p.m.), then each RUC will be generated 2 hours before its activation time (because
the next RUC activation time ater 2:00 p.m. is 4:00 p.m.). The gap between RUC
generation and RUC activation is called the RUC delay.

When there is a non-zero RUC delay, generating a RUC model includes an additional
step at the beginning of the RUC generation process. In this first step, a SCED
model is created and solved for the period starting with the current simulation
time and ending after the RUC activation time. Next, a RUC model is created using
the future system state predicted by the SCED as its initial conditions.

The very first RUC of the simulation is always generated with zero RUC delay, even
if Prescient has been configured to generate other RUCs in advance.

Prescient provides several plugin points to allow the RUC generation and activation
process to be observed or modified. These are documented in the
Detailed Prescient Simulation Lifecycle.

SCED Details

A Security Constrained Economic Dispatch plan, or SCED, determines the power output
level of each dispatchable generator during a single timestep of the simulation.
SCEDs work in conjunction with RUCs (Reliability Unit
Commitment plans) to simulate operation of the power network.

Each SCED determines operational parameters of each dispatchable generator for a single time step. The SCED coordinates
changes to generator setpoints to minimize total costs for the system as a whole.
The decisions in a
SCED are made by building a model which reflects the state of the power network
at the current simulation time, forecasts for future loads and future renewable
power generation, and unit commitments as dictated by the most recently activated
RUC. The model is solved to find the most cost-efficient way to satisfy
current and forecasted loads while honoring system constraints such as reserve requirements
and line limits. SCEDs always honor unit commitment decisions made by the active
RUC. The number of hours of forecast data to include in the SCED model is
determined by the SCED horizon.

If market settlement is enabled,
additional market-related statistics are calculated with each SCED. These
statistics report performance against day-ahead commitments and reserve
requirements and the resulting impact on generator revenue.

SCEDs are generated more frequently than RUCs. Where a new RUC is typically
generated between 1 and 4 times a day, SCEDs occur at least hourly. The SCED
frequency determines how often a SCED is
generated, and also serves as the size of the simulation time step.

Prescient provides several plugin points to allow the SCED generation process to
be observed or modified. These are documented in the Detailed Prescient Simulation Lifecycle.

Plugins

Plugins provide opportunities for custom code to observe or modify simulation
data at specific points in the simulation lifecycle. Plugins are python
modules that include a specific set of functions that enable Prescient to
interact with the plugin module. Plugins are specified on the command line, or
in the options passed to the Prescient simulate() method if running Prescient
in code.

Plugin modules must include a registration function, through which the plugin
requests that custom code be called at specific points in the simulation process.
Each point at which custom code may be called is known as a plugin point. The
function that is called at a plugin point is known as a callback.

Plugin points come in two flavors: statistics plugin points and simulation plugin
points. Statistics points allow plugins to view statistics at various stages of
the simulation. Simulation plugin points provide a more detailed view of specific
steps within the simulation; some provide opportunities to customize simulation
behavior.

Identifying Plugins

Any plugins that will be included in a Prescient simulation must be specified
with the –plugin simulation option. The syntax for this
option is a little different than other options, and is best explained by example.

Every plugin in a particular Prescient run is given an alias. This is the name by
which the plugin will be identified in the run. It determines where the plugin’s
configuration options will be stored in the configuration object, and may be used
to give the plugin’s custom options a unique name on the command line.

Plugins are identified by path to the python module (.py file), or by python
module name as it would appear in a python imports statement. If the module is
specified by module name, it must be able to be found by python’s module import
system, such as being located in the PYTHONPATH.

The command line syntax to include a plugin is –plugin <alias>:<path or module
name>. For example, the following partial command line will include two plugin
modules, one specified by relative path and one specified by module name:

python -m prescient.simulator --plugin plug1:custom/plugin1.py --plugin plug2:custom.plugin2 <etc...>

If a plugin defines new configuration options, values can be provided for the new options
anywhere after the plugin has been specified:

python -m --plugin myplug:custom_plugin.py --custom-opt 100 <etc...>

When configuring Prescient from code, assign a nested dictionary to the plugin
element of the configuration options object. The following code example is
equivalent to the previous command line example:

from prescient.simulator import Prescient

p = Prescient()
config = p.config
config.plugin = {
 'myplug':{
 'module':'custom_plugin.py',
 'custom_opt':100
 }
}
...additional configuration ommitted
p.simulate()

The outer dictionary assigned to the plugin option holds one entry per plugin.
Each entry’s key is the plugin’s alias, while the entry’s value is a dictionary
holding the plugin’s data. At a minimum, a plugin’s data dictionary must include
a ‘module’ element identifying the python module. If the plugin module defines
custom options, values for those options may be supplied as additional dictionary
entries. Values can also be set on separate lines of code:

config.plugin = {
 'myplug':{
 'module':'custom_plugin.py',
 }
}
config.plugin.myplug.custom_opt = 100

Plugin Module Initialization

A plugin module must have two functions with specific names and signatures.
Prescient initializes each plugin module by calling these two required functions
before the simulation starts, in the order listed below.

get_configuration()

The get_configuration() function allows plugins to add custom options to the
Prescient configuration. Once a plugin has defined custom options, those options
can be set on the command line or in code just like standard configuration options.

The get_configuration() function must have the following signature:

def get_configuration(key: str): -> Optional[pyomo.common.config.ConfigDict]

The key is the plugin’s alias specified in the configuration. The key may be
incorporated into the text of custom options.

The function should return a pyomo ConfigDict containing any custom options, or
None if the plugin has no custom options.

register_plugins()

The register_plugins() function allows a plugin to indicate what callback
functions should be called, and at what plugin points.

The register_plugins() function must have the following signature:

def register_plugins(context: pplugins.PluginRegistrationContext,
 options: PrescientConfig,
 plugin_config: ConfigDict) -> None:

The context is an object used to register callbacks. The context object
has a registration function for each plugin point. Each registration function
takes a function (or other Callable) as an argument. A plugin’s implementation
of register_plugins() should call the context object’s registration
method for each plugin point of interest, passing in the callback function
to be called at the corresponding plugin point.

For example, the code below requests that a function named my_stats_callback
be called every time daily statistics are published:

context.register_for_daily_stats(my_stats_callback)

Registration function names follow a pattern that embeds the name of the plugin
point. The pattern used to name plugin registration functions differs for statistics
callbacks and simulation callbacks. For statistics callbacks, the pattern is
register_for_<which>_stats(), where which is the desired time frame. For
simulation callbacks, the pattern is register_<which>_callback(), where
which is the name of the plugin point.

The options argument is the full set of configuration options for the simulation.

The plugin_config is the plugin’s custom options as defined by what was returned
from the plugin’s get_configuration() method, with their values as set from
the command line or in code. It is the same as what is found at options.plugins.<alias>,
where <alias> is the plugin’s alias passed to the get_configuration()
function earlier.

Statistics Plugin Points

Statistics plugin points allow plugins to see statistics
about the simulation. Statistics are published at various time scales.

Operations Statistics

Operations statistics are published at the end of every timestep. They report the
results of a single SCED.

Hourly Statistics

Hourly statistics are published after the final timestep of every hour They report the
aggregate results of all SCEDs within the hour.

Daily Statistics

Daily statistics are published after the final timestep of every day (the last
timestep before midnight). They report the aggregate results of all SCEDs within
the day.

Overall Statistics

Overal statistics are published after the final timestep of the simulation. They report
aggregate results for the full simulation.

Simulation Plugin Points

Each plugin point occurs at a different place in the simulation process, and
serves a different purpose.

The options_preview Callback

This callback is called after command line options have been parsed, but before
they have been used to initialize simulation objects. The callback may modify
option values.

The initialization Callback

This callback is called after Prescient simulation objects have been created and
initialized. The callback may choose to initialize its own data structures at this
time.

The after_get_initial_model_for_simulation_actuals Callback

Prescient manages actual values by periodically loading from the input data source
into an Egret model. This callback is called after an Egret model has been prepared
to hold actual values, but before the values have been loaded. The structure of the
model will be in place - network elements like generators and branches will be
present - but values will not have been loaded yet. The callback can insert any
non-standard elements and actual values it may use. The callback should not
populate values normally provided by Prescient, as those values will be overwritten
after this callback returns.

The after_get_initial_model_for_ruc Callback

Prescient manages forecasts by periodically loading them into an Egret model from
the input data source. This callback is called after an Egret model has been
prepared to hold forecast values but before the values have been loaded. The
structure of the model will be in place - network elements like generators and
branches will be present - but values will not have been loaded yet. The callback
can insert any non-standard elements and forecast values it may use. The callback
should not insert forecast values normally provided by Prescient, as those values
will be overwritten after this callback returns.

The before_ruc_solve Callback

This callback is called after an Egret model has been fully prepared for a RUC
and is about to be solved. The callback may modify the Egret model.

The after_ruc_generation Callback

This callback is called after a RUC model has been solved. The callback is able
to see (and potentially modify) the resulting RUC plan.

The after_ruc_activation Callback

This callback is called at the beginning of the effective period of a new RUC.
Unit commitment decisions made by the newly activated RUC will be honored until
the next time the after_ruc_activation callback is called.

The after_get_initial_model_for_sced Callback

This callback is called as a SCED model is being prepared. When this callback is
called, the structure of the model will be in place - network elements like
generators and branches will be present - but values will not have been loaded yet.
The callback can insert any non-standard elements and values it may use. The
callback should not insert values normally provided by Prescient, as those values
will be overwritten after this callback returns.

The before_operations_solve Callback

This callback is called after a fully populated SCED Egret model has been generated,
before the model has been solved. The callback may modify the Egret model.

The after_operations Callback

This callback is called after an Egret SCED model has been solved. The callback can
examine (and potentially modify) the results.

The update_operations_stats Callback

This callback is called after an Egret SCED model has been solved and examined by
any The after_operations Callback callbacks, just before the results are
incorporated into statistics.

The finalization Callback

This callback is called after the simulation is complete. It gives plugins a chance
to cleanly shut down.

Python Classes and Functions

Index

 _static/image/Example-Fuel-Curve.png
HR_incr_3 —

HR_incr_2 —

HR_incr_1 {

HR_avg_0 —

0.20
Output_pct_0
0.43
Output_pct_1

L [
:‘ ‘

0.78
Output_pct_2
1.0
Output_pct_3

_static/image/PrescientSimulationCycle.png
Startup

Main
Simulation
Loop

RUC
Generation
Time?

Generate RUC

Activate RUC

no]

v

Deploy SCED

Finalize Timestep

Reached
Simulation
End?

Finalization

_static/image/RucScedCycle.png
RUC

Daily — Generator Commitments

SCED

Hourly — Dispatch Levels

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Prescient Documentation

 		
 Using Prescient

 		
 Installation

 		
 Install python

 		
 Install a MILP solver

 		
 Install Prescient Using Pip

 		
 Install Prescient From Source

 		
 Running Prescient

 		
 Launch with runner.py

 		
 Launch with the prescient.simulator module

 		
 Running Prescient from python code

 		
 Configuration Options

 		
 Overview

 		
 Option Data Types

 		
 List of Configuration Options

 		
 Input Data

 		
 Standard Input

 		
 Custom Data Providers

 		
 Results and Statistics Output

 		
 Customizing Prescient with Plugins

 		
 Modeling Concepts

 		
 The Prescient Simulation Cycle

 		
 The RUC Cycle

 		
 The SCED Cycle

 		
 Time Series Data Streams

 		
 Real-Time Data (Actuals)

 		
 Forecasts

 		
 Reserves and Ancillary Services

 		
 Energy Markets and Pricing

 		
 Examples and Tutorials

 		
 Reference

 		
 Input Data

 		
 The CSV Input File Format

 		
 Custom Input Data Providers

 		
 Detailed Prescient Simulation Lifecycle

 		
 Startup

 		
 The Main Simulation Loop

 		
 Finalization

 		
 RUC Details

 		
 SCED Details

 		
 Plugins

 		
 Identifying Plugins

 		
 Plugin Module Initialization

 		
 Statistics Plugin Points

 		
 Simulation Plugin Points

 		
 Python Classes and Functions

_images/PrescientSimulationCycle.png
Startup

Main
Simulation
Loop

RUC
Generation
Time?

Generate RUC

Activate RUC

no]

v

Deploy SCED

Finalize Timestep

Reached
Simulation
End?

Finalization

_images/RucScedCycle.png
RUC

Daily — Generator Commitments

SCED

Hourly — Dispatch Levels

_images/Example-Fuel-Curve.png
HR_incr_3 —

HR_incr_2 —

HR_incr_1 {

HR_avg_0 —

0.20
Output_pct_0
0.43
Output_pct_1

L [
:‘ ‘

0.78
Output_pct_2
1.0
Output_pct_3

